
 
 

1 INTRODUCTION 

In recent years, specialists have increasingly sought to address the problems inherent in rein-
forcing masonry structures. This is for a number of reasons. Firstly, there is a growing need to 
preserve the architectural identities of masonry buildings – their aesthetic and historical value. 
Moreover, a number of earthquakes have revealed the seismic vulnerability of such structures. 
Lastly, the models and calculation techniques used so far have proved incapable of accurately 
predicting the complex behavior of masonry, thus highlighting the need for further research.  

Recently, modern materials technology has provided new possibilities through light and re-
movable retrofit techniques utilizing efficient and easily worked reinforcing components. In this 
respect, fiber reinforcement techniques have been adopted successfully to restore many masonry 
structures (Bakis et al. 2002). Nevertheless, research efforts are still needed to fully comprehend 
the structural behavior of arches, and more in general masonry buildings, strengthened with Fi-
ber Reinforced Plastic composites (FRP). In recent years, the foregoing reasons have prompted 
many authors to seek behavioral models and numerical procedures able to predict their struc-
tural response (Luciano et al. 2002, Ascione et al. 2005, Drosopoulos et al. 2007).  

In previous works, we defined a numerical model for performing non-linear static and dy-
namic analyses of masonry columns, arches, towers and slender structures, in general. Based on 
such results, in this paper we present a simple model for fiber-reinforced masonry elements. To 
this end, a constitutive equation has been developed to model one-dimensional elements made 
of a non-linear elastic material, with no resistance to tension and limited compressive strength. 
The reinforcement, which is instead assumed to have no resistance to compression, is applied to 
the intrados and/or extrados of the arches. Limited tensile strength can also be considered for the 
FRP, though such a premise is less profitable from a practical standpoint. 

Furthermore, a simple procedure has been developed to determine the normal and tangential 
interactions between the arch and the reinforcement, the aim being to monitor if and when FRP 
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model’s predictions. 
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debonding might occur. In this respect, it is worthwhile noting that post-debonding analyses are 
not possible with the current version of the model, though this issue is currently under investiga-
tion and will be the topic of a forthcoming paper. 

2 MODEL SPECIFICATIONS 
2.1 Constitutive equation 

By presuming that the sections remain plane and orthogonal to the line of the deformed axis, 
and accounting for axial stress alone, the deformation of a beam can be described in terms of 
two generalized strains only: extensional strain ε and curvature κ of the axis. Under the afore-
mentioned assumptions, the behavior of both masonry and the reinforcement material can be de-
scribed as in figure 1, where σc and εc (Fig. 1a) respectively denote the minimum admissible 
compressive stress and the strain at which such stress is first attained in the masonry. For fibers 
applied to the intrados and the extrados, the maximum admissible tensile stress and the corre-
sponding strain are indicated in figure 1b) as σi, σe and εi, εe, respectively (where the subscripts i 
and e stand for intrados and extrados). Such distinction has been made to render the model as 
general as possible, so that, for example, it can also be used to represent the common cases of 
reinforcement on the extrados or intrados alone. In the same way, the geometrical and other me-
chanical properties will hereafter be specified in general terms, by means of the subscripts i and 
e, depending on FRP location. 
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Figure 1 : σ-ε diagram under uniaxial stress for a) masonry, b) reinforcement material; 

 c) section’s geometry.  
 
The amounts of exterior and interior reinforcement in a given cross-section are taken into ac-

count, respectively, through the two parameters Ke and Ki: 

,     ,   e e e e i i i iK n E K n Eδ δ= =   (1) 

where, as shown in figure 1c), δe, δi represent the composite fiber thickness, ne = bfe /b ni = bfi /b 
denote the width of the composites normalized to the section width b, and Ee and Ei are their 
Young's modulus. 

As a consequence of the above kinematic and constitutive assumptions, the diagram of the 
axial stress σ, in a generic rectangular cross section of dimensions b and 2h, reinforced on both 
the intrados and extrados, is one of those presented in Fig. 2, which illustrates the cases for κ<0 
alone. 
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Figure 2 : ε and σ patterns over a generic cross-section. 

 
In all cases, the normal stress σ has a piecewise linear diagram. Let y1, y2, y3, y4 be the posi-

tions where σ reaches the values 0, σc σe and σi, respectively. Their values can be easily ex-
pressed as functions of ε and κ, from equations 

1 1 2 2 3 3 4 4( ) 0,    ( ) ,    ( ) ,    ( )c e iy y y y y y y yε ε κ ε ε κ ε ε ε κ ε ε ε κ ε= + = = + = = + = = + =  (2) 

which are a consequence of the Euler-Bernoulli hypothesis. 
Consequently, the plane of generalized strains turns out to be naturally divided into 22 regions, 
in each of which the above stress regimes hold. In this way, the constitutive relation, i.e. the 
mapping which associates the corresponding generalized stress to the generalized strain, the ax-
ial force N and the bending moment M can all be determined. 

To this end, it is convenient to introduce the following non-dimensionalized parameters: 

2,   ,   ,   ,   ,   .
2 2 2 2

e c i c
e i

c c c c c c

K Kh N Mn m k k
bh bh h h

ε εε κη χ
ε ε σ σ σ σ

= = = = = =  (3) 

Although the model has been developed to provide for a limit to FRP tensile strength in view 
of future enhanced behavioral representations, for the sake of brevity, the general case has been 
left out here, as FRP’s limited strength to tension actually only comes into play in a rather lim-
ited number of cases. Therefore, in the following we refer to reinforcement with unlimited ten-
sile strength as a special case of the composite’s assumed behavioral law, shown in Fig. 1b), 
that is, for σi→∞ and σe→∞ .  

Under such circumstances, the partition in the (η,χ) plane is reduced to the six plus six re-
gions shown in Fig. 3 – symmetrical with respect to the η axis – in which the following rela-
tions hold: 



 
 
 
 

 
680 ARCH’07 – 5th International Conference on Arch Bridges 

 

1
2 2 3 2 3

2 2

3
2 3 2 3

4 2

2 2

5 2

6

: ,   ;

2 ( 1) ( 1) 2 3 (1 ) ( 1): ,   ;
4 4

: 1,   0;

( ) 3 2: ( ),    3 ( );
4 4

2 1 2 3 3 1 3: ( ),   3 ( );
4 4

: ( ) (

e e

e e

i e

n m

n m

n m

n k m k

n k m k

n k k

η χ

χ χ η η χ χ η η
χ χ

η χ η χ η χη χ χ η
χ χ

η χ η η χη χ χ η
χ χ

χ η

Σ = =

− + + − + − + −
Σ = − =

Σ = =

+ − + +
Σ = + − = + −

− + − + − +
Σ = + − = + −

Σ = − + [ ]),     3 ( ) ( ) .i e i e i ek k m k k k kχ η+ = + + −

 (4) 

Similar relations can be obtained for regions Σ'i (i=1,..,6) by virtue of simple symmetrical 
properties. 
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Figure 3 : Partition of the plane (η,χ). 

2.2 Finite element model 
Despite the relative simplicity of the proposed constitutive relation, explicit solutions to equilib-
rium problems of reinforced masonry arches are nonetheless very difficult to obtain and gener-
ally require resorting to numerical methods.  

To this end, a finite element approach has been followed. In particular, in discretizing the 
one-dimensional structures into finite elements: i) three degrees of freedom – axial and trans-
verse displacements plus rotation – have been assigned at each node; ii) conforming elements 
and Hermite shape functions have been selected to guarantee the continuity of both transverse 
displacements and rotations; iii) linear shape functions have been used for axial displacements, 
as well. In addition, standard numerical techniques, based on the Newton-Raphson iterative me-
thod, have been used to solve the non-linear system resulting from the structure’s discretization. 
Note that this method requires explicit evaluation of the derivatives of the generalized stresses 
given in Eq. (4) with respect to the generalized strains.  

The numerical method has been implemented into a finite element code, which enables ana-
lyzing both unreinforced and reinforced arches, with any geometries and restraints, under any 
loading conditions, together with their self-weight.  
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2.3 Failure modes 
To date, a great deal of research has been devoted to identifying the modes of collapse of ma-
sonry arches, most of which are widely recognized. The first is the classical four/five hinges 
mechanism studied by Heyman (1982), which is typical of unreinforced arches subjected to a 
vertical pointwise load. Such a collapse mode is attributed to masonry’s low or null tensile 
strength.  

Less widespread, and consequently less well-known, are cases of failure that actually involve 
masonry crushing. If a limited compressive strength is accounted for, under some particular 
loading conditions, hinges may occur upon collapse of unreinforced arches, not only with ma-
sonry cracking, but crushing as well (Lucchesi et al. 1996, Pintucchi and Zani 2007). A similar 
failure mode, termed compressive crushing, may also be exhibited by FRP-strengthened arches, 
as the reinforcement prevents or at least reduces the cracking of sections.  

The proposed model is able to predict both these failure modes, together with the correspond-
ing ultimate load, as both masonry’s inability to furnish tensile strength and its bounded com-
pressive strength are embedded into the constitutive equation, which provides for cracking and 
crushing of the masonry. In this respect, it should however be noted that, in contrast to what 
generally occurs in unreinforced arches undergoing compressive failure, the model predicts that 
crushing failure in FRP-strengthened arches occurs at rather high strain values, due to the low 
location of the neutral axis in the section caused by the presence of the reinforcement. There-
fore, analyzing such structures calls for setting a limit value to compressive deformability. 

Experimental tests performed in recent years have shed light on other phenomena that may 
affect the load carrying capacity of a reinforced arch, as well as the mechanisms governing col-
lapse. If reinforcement is applied to the intrados of an arch, when the connection between the 
FRP and the masonry is poor, debonding of the FRP may occur, considerably decreasing its 
strengthening effects. Moreover, experimental evidence shows that an arch may also collapse 
because the masonry stones slide at the springings and at the point of concentrated loading, es-
pecially when the reinforcement is applied along the entire length of the extrados (Drosopoulos 
et al. 2007). 

Such possible premature collapse modes cannot be provided for directly in the proposed 
model. However, monitoring the possible onset of the earliest debonding phenomena can be 
conducted by estimating the values of the FRP-masonry interactions with increasing applied 
load. Indeed, debonding is certainly related to the values at the masonry-composite interface of 
normal (peeling) stress and shear stress, here respectively referred to as σrad and τtan. Such values 
can be easily obtained through equilibrium considerations, once the axial force Nf in the rein-
forcement has been determined. In fact, the reinforcement may be interpreted simply as a circu-
lar arch subjected to axial force alone, in equilibrium with the distributed tangential and radial 
load, p and q, which result from both the arch’s actions on the composite and any eventual ex-
ternal loads. 

As the bending moment and the shear force in the fiber are null, the equilibrium equations of 
a circular arch of radius rf  are: 

,   ,  f f

f

dN N
q p

ds r
= − = −  (5) 

where s is the natural parameter. Therefore, we have 

tan
1 ,   ,  f f

rad
f f f

dN N
b ds b r

τ σ= − = −  (6) 

where bf  is the width of the composite fiber. 
As debonding generally coincides with failure of a masonry layer close to the interface, rather 

than failure of FRP’s adhesive power, the following criterion seems to be appropriate (Trianta-
fillou, 1998): 

2
2
tan .

2 4
rad rad

bf
σ σ τ+ + =  (7) 
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Of course, this approach requires knowing the limiting value, fb,lim, of fb, related to debonding 
and precludes post-debonding analysis. 

Although not considered herein, the sliding of sections could be checked via a similar proce-
dure, by predicting the shear stress in comparison with a bounded reference value.  

3 CASE STUDIES 

In this section we evaluate some case studies to check the proposed model’s ability to effec-
tively predict the ultimate load and failure modes of reinforced and unreinforced arches. The 
numerical study is carried out with reference to arches whose behavioral response up to collapse 
has been recently determined through experimental tests. For the purposes of comparison, some 
of the available results are presented in Briccoli Bati and Rovero (2000) and Briccoli Bati et al. 
(2004).  

In this preliminary study, comparisons with experimental data have been useful chiefly to ve-
rify the model’s ability to capture the actual collapse mechanisms of tested specimens, espe-
cially from a qualitative perspective. An attempt has also been made to infer the reference limit-
ing value, fb,lim, in order to avoid premature FRP detachment. Moreover, we have also focused 
our attention on identifying a reasonable bound for masonry’s deformability under compression, 
εm, referred to in the following as εm,lim. 

The analyzed structure is a reduced circular arch with clamped springings and mean radius r 
= 91.5 cm, a uniform rectangular cross-section of dimensions b = h = 10 cm, and springing an-
gle Θ equal to 30° (Fig. 4). It is subjected to the pointwise load P, which is increased until col-
lapse occurs. 
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Figure 4 : Analyzed arch. 

 
The analyzed arch is considered both in the unreinforced version (Case A), and with a rein-
forcement attached to the entire intrados. The mechanical properties assumed for the masonry 
and composite fibers are listed in Table 1. 

 
Table 1 : Masonry and FRP properties 

 γ (kg/m3) E (MPa) σc (MPa) σi (MPa) δi (mm) 
Brick 1800 1785 17.39   
Mortar 200 133 7.8   
Masonry 1800 830 8.6   
MBrace Fibers C1-130 1820 230000  > 3430 0.176 
primer 1067 > 700  > 12  
adhesive 1020 > 3500  > 50  
Composite  31545   0.08 

 
Four variants of the FRP-strengthened arch (Cases B, C, D, E) have been considered by vary-

ing the reinforcement fiber width bf , from 10 cm to 1.25 cm.  
Table 2 shows the collapse load values reported in the aforementioned experimental study for 
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each of the considered cases, which also revealed different failure modes. The unreinforced arch 
(Case A) undergoes the classical five-hinge collapse mechanism, ascribable to masonry’s low 
tensile strength. In the other cases, FRP debonding and compressive masonry failure occur, de-
pending on the reinforcement width. More precisely, Case B, with the smallest amount of FRP, 
is characterized by premature detachment of the FRP, followed by a failure mode similar to the 
unreinforced arch; in Case C, progressive debonding takes place, accompanied by the onset of 
masonry crushing at the keystone. Finally, in Cases D and E, the most highly reinforced, de-
bonding does not occur, and the collapse mode is governed primarily by material crushing at the 
crown. 

 
Table 2. The considered arches 

Case FRP width bf (cm) Collapse Load (N) 
A Unreinforced 450 
B 1.25 3560 
C 2.5 4520 
D 5 6580 
E 10 7250 

 
In performing the numerical analysis of Case A, the applied load was incremented until numeri-
cal convergence was no longer achievable. The last value obtained (F = 450N) coincides with 
the actual collapse load determined experimentally, thus highlighting the perfect agreement be-
tween the model’s prediction and the experimental results. Furthermore, the model accurately 
describes the observed collapse mechanism, as shown in Fig. 5.  
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Figure 5 : Line of thrust and five hinge collapse mechanism obtained by numerical simulation. 
 

For the reinforced arches (Cases B, C, D), instead, the applied load has been incremented up 
to the value that resulted in collapse experimentally, and the numerical values of fb (Fig. 6a) and 
εm (Fig. 6b) corresponding to such a load value then determined.  
 

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
0

5

10

15

20

25

30

35

b
f
 [cm]

f
b
[N/cm2]

B

C
D

E

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
0

1

2

3

4

5

6 x 10-3

b
f
 [cm]

ε
m

B C

D E

 
a) b) 

Figure 6 : Values of: a) stress at the interface, b) masonry maximum compressive deformation reached at 
collapse in the four cases considered (B, C, D, E) as a function of the amount of fiber bf. 
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Fig. 6 shows that the numerical results are consistent with the collapse mode exhibited in 
each case. Indeed, Case B, in which premature failure by debonding occurs, yields larger values 
of fb than the other cases, while the value εm is quite contained. Conversely, for Case E, in which 
crushing failure occurs, fb is less important, while εm is more significant. Moreover, in Case C, 
which represents an intermediate situation (i.e. with both debonding and crushing), the values of 
fb and εm fall within the range defined by the two previously discussed Cases. Lastly, in Case D, 
in which crushing prevails, although the value of fb is relatively large, εm reaches its maximum 
value.  

4 CONCLUSIONS 

A numerical model for studying FRP-strengthened masonry arches has been developed and im-
plemented into a finite element procedure. The implemented code allows for analyzing the 
structural response of arches with various geometries and restraints under very general load 
conditions. The model assumption that masonry is a no-tension material with limited compres-
sive strength enables capturing collapse failure involving masonry cracking and crushing. Al-
though the current model does not allow for post-debonding analyses, possible premature fail-
ures due to the FRP detachment are revealed by the stress values at the FRP-masonry interface, 
as evaluated by means of a simple procedure. 

As the limited amount of data currently available does not permit identifying values of fb,lim 
and εm,lim, the comparisons between numerical and experimental results have been discussed 
from a qualitative standpoint alone. Nonetheless, the predictions of the proposed model reveal 
to be quite consistent with the experimental results, thus encouraging further development. 
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