
 
 

1 INTRODUCTION 
1.1 General overview 
For the construction of the high-speed railway line between Antwerp and Amsterdam, a wide 
variety of slender steel tied arch bridges was built. The buckling behaviour of these arches, 
which is one of the decisive parts in the design, might be studied by carrying out elastic-plastic 
simulation using finite element software. However, an important unknown parameter of the 
problem is the size and shape of the out-of-plane imperfections of the arch. 

To assess the size of the imperfections, an analytical model is being proposed, based on a 
comparison between the calculated stresses in the arch and stresses derived form strain gauge 
measurements. To deliver these strain values, extensive strain measurements were carried out. 
Several tied arch bridges were equipped with strain gauges on a number of sections along the 
entire bridge axis, with unidirectional strain gauges in all four corners of the arch cross-sections. 
Simultaneously, the stresses resulting from the in-plane bending moment and the thrust force 
were calculated analytically. The accuracy of the calculated stresses was expanded by incorpo-
rating the effect of the transversal bending of the bridge deck. This effect causes an out-of-plane 
bending moment in the arch as well as a small torsion effect. The measurements pointed out that 
there was indeed some torsion of the arch section. Despite the fact, that the magnitude of this 
out-of-plane moment are rather small compared to the effect of the thrust force and the in-plane 
bending moment, it seems to have an important contribution to the accuracy of the imperfec-
tions. 

The calculations indicate that a more accurate assessment and better understanding of the 
stresses, resulting from the effect of the out-of-plane imperfections, might allow for a higher 
arch carrying capacity. This could then be translated in more elegant arch bridges, which are 
better accepted by the general public. 
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ABSTRACT: One of the decisive parts of the design of a steel tied arch bridge is the buckling 
strength of the arch. This can be determined by elastic-plastic calculation using finite element 
software. Assumptions have to be made concerning the geometrical imperfections. An analyti-
cal method has been developed to determine the imperfections based on the comparison be-
tween stresses derived from strain gauge measurements and calculations. The analytical method 
is based on the calculation of the stresses caused by all internal forces and the unknown imper-
fections. The method was validated, using finite element calculations. As the method gives sat-
isfactory results, the stresses resulting from a strain measurements campaign on a real bridge 
were also used as input for the method. The detailed calculation of the out-of-plane moment re-
sulting from the imperfections is the main contribution of the proposed method. 
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1.2 Strain measurements 
The analytical model, developed to estimate the out-of-plane imperfections, makes use of 
stresses, which are derived from strains measured on a real bridge. The bridge, used in this pa-
per to illustrate the method, is the Albert Canal Bridge. This bridge was built in Belgium, near 
the city of Antwerp, as a part of the new high speed railway. The bridge span equals 115m. The 
two arches are connected to the lower member by sixteen inclined hangers. The upper bracing is 
formed by three tubes of large diameters spread out along the length of the arch. The arch 
springs are tied by the lower chord, consisting of an orthotropic steel deck plate. 

 

 
Figure 1 : The Albert Canal Bridge. 

 
The bridge was used for extensive strain measurements. One of the two arches was equipped 

with strain gauges at the four corners of the arch section, and this in 6 sections along the length 
of the arch. Since the strain gauges were installed after the erection of the bridge, only the live 
loads were taken into account in the analytical method. 

Next to the measured stresses, results from a finite element model were also used as input for 
the analytical method, in Outtier et al. (2006). This model contained al the details of the bridge, 
such as the arches diaphragms, the plate connecting the hangers to the arches and the bearings 
to the smallest detail. The advantage of the use of this finite element model resides in evaluating 
the analytical model with known imperfections. Indeed, the real imperfections in the arch are 
unknown to this point. 

 Another advantage of the finite element model lies in the possibility to distinguish independ-
ent actions of the various internal forces. 

2 ANALYTICAL METHOD FOR THE CALCULATION OF THE IMPERFECTIONS 
2.1 Introduction 
The basic idea of the analytical method is that the stresses in a perfect arch are calculated and 
compared to the stresses in a real arch. The imperfections then follow from the results of this 
comparison. 

The steel tied arch bridge, described above, has a very particular arrangement of the hangers. 
The inclined arrangement of the hangers, results in a two-dimensional, stable triangular frame-
work, in each arch plane. For the calculation of the normal force and the in-plane bending mo-
ment, the arch was thus simplified to a triangular framework. The framework can be calculated 
by the slope-deflection method. However, once the normal force and in-plane bending moment 
are known, the curvature of the arch section is taken into account, by superposition of the actual 
arch behaviour on each arch section.  

Since the bearings of the Albert Canal Bridge are not located exactly at the intersection of the 
axes of the arch and of the lower chord, a supplementary in-plane bending moment is developed 
in the arch. The horizontal shift of the bearings is necessary, given that the bearing is rather 
large and additional stiffeners have to be installed in the deck system at the end of the lower 
chord. 

Since the wind bracings resist the out-of-plane bending moment, and assuming that the wind 
bracings act as fully constrained supports, the out-of-plane bending moment can be easily calcu-
lated as for  a continuous beam on five supports, in the case of the Albert Canal Bridge.  

After the determination of all of the above forces, the out-of-plane bending caused by the un-
known imperfections can be calculated. 
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2.2 Normal force and in-plane bending moment  
For the calculation of the normal force and in-plane bending moment, the arch is, as mentioned 
above, modelled as a triangular framework, consisting of the lower beam, hangers and straight 
beams between the hangers instead of the curved beams of the actual arch. This framework con-
sists out of 35 beams, connected to each other by 19 nodes. Once the normal force and in-plane 
bending moment has been calculated, the curvature of the arch will be taken into account. 

2.2.1 Slope defection method (triangular framework) 
2.2.1.1 Definition of the unknowns 
The triangular framework is calculated with the slope-deflection method. The basic conditions 
are found by expressing rotational equilibrium of each node. In addition the nodes may show 
displacements, it is necessary to formulate the translation equilibrium besides the rotational 
equilibrium. Keeping this in mind, there are still 19 unknown node rotations, and 35 unknown 
rod rotations in the model of the Albert Canal Bridge.  

2.2.1.2 Rotational equilibrium 
Before writing down the rotational equilibrium of each node, the moments can be determined as 
a function of the unknown node and beam rotations, using the constitutive equations of the 
slope defection method, see Eq. (1) and Eq. (2). The sign of each variable is according to the 
convention to which the moments that rotate a node clockwise or the end of a beam counter 
clockwise are positive. 
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Herein, iK is the stiffness of the beam, lφ  and rφ  the node rotation respectively at the begin-
ning and the end of the beam and iψ the beam rotations. 

For each node , the rotational equilibrium is then given by: 

0=∑ rM  (3) 

Equation (3) in combination with equations (1) and (2) gives a system of 19 independent 
equations in 56 unknown parameters.   

2.2.1.3 Translational equilibrium 
The translational equilibrium of each node makes use of the normal and shear forces in the rods. 
The shear forces can easily be found with the help of Eq. (3) and Eq. (4). 
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The normal forces can however not be determined so easily. According to Vandepitte (1981) 
the normal forces can be derived from the displacement values of each node, as shown in Fig. 2. 
The relation between the length l  of the rod and the coordinates of the nodes, A and B is given 
by Eq. (5). Eq. (6) gives then the same relationship between the length ll ∆+  after deformation 
of the rod and the coordinates after loading A’ and B’. Subtracting Eq. (5) from Eq. (6) gives 
the normal force as a function of the displacements of the nodes, as can be seen Eq. (7). 
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Figure 2 : Displacement of a rod. 
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Herein, N is the normal force in the beam, A the section of the beam and E the Young’s 
modulus of steel. 

Before the normal forces can be entered in the equations for the translation equilibriums for 
each node of the framework, the displacements of the nodes must still be written as a function 
of the angular rotations. This can be done in a similar way, as can be seen in Fig. 2 and Eq. (8).  
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Since the beam rotations of the hangers are dependent on the displacements of the nodes of 
the arch and the lower chord, the beam rotations of the hangers can thus be written as a function 
of the beam rotations of the arch and the lower chord. This reduces the number of unknown pa-
rameters to 19 unknown node rotations and 19 unknown beam rotations. In this system, 19 rota-
tional equilibriums can be written, as well as 19 translational equilibriums for each node. Hence 
the system can be solved.  

2.2.1.4 Curvature of the arch 
Up to this point, the arch was simplified to straight beams. Based on this simplification, the nor-
mal forces in the arch beams are always aligned oriented to axis of the beam, as is standard for 
the slope deflection method. Nevertheless, because of the curvature of the arch, the normal 
force has to be oriented according to the tangent to the arch at each point, resulting in a varying 
direction for the normal force, along the curvature of the arch, see Fig. (3). 

This necessitates an adjustment of the normal force and the in-plane bending moment as cal-
culated by the slope-deflection method, given by Eq. (9) and Eq. (10). 

αα sincos' ⋅+⋅= VNN  (9) 

xVyNMM ⋅+⋅−='  (10) 

Herein α is the angle between the tangent to the arch for each point of the arch and the axis of 
the beam.  

The results of these calculations are discussed further on. 
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Figure 3: Differences between a straight rod and a curved beam. 

2.2.1.5 Supplementary in-plane moment cause by the shift of the  bearing 
As mentioned before, a supplementary in-plane bending moment exists, caused by the small 
horizontal shift of the supports. This bending moment equals the resultant of the internal forces 
in the bridge and the reaction at the bearings, multiplied with the size of the horizontal shift of 
the bearings.  

2.2.1.6 Results 
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Figure 4: The normal force in the arch (full line) and the normal force in the arch without taking into ac-

count the curvature of the arch (dashed line). 
 

The results of the calculations are shown in Fig. 4 and Fig. 5. The dashed lines in Fig. 4 and Fig. 
5, represent respectively the normal force and in-plane bending moment, without taking into ac-
count the curvature of the arch. If the curvature is taken into account, the full line must be ob-
served. 

The difference between the two lines in Fig. 5 is quite important and is the largest just be-
tween two points connecting hangers to the arch. Since the measurement locations are situated 
between these connection points, this adjustment was indispensable for obtaining a more accu-
rate result for the imperfections. 
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Figure 5: The in-plane bending moment in the arch (full line) and the in-plane bending moment without 

taking the curvature of the arch into account (dotted line). 

2.3 Out-plane bending moment 
Disregarding the effect of the wind, the out-of-plane bending moment is primarily caused by the 
bending of the bridge deck itself, as it introduces a secondary bending moment at the arch 
springs. Assuming the deck plate is clamped in the arch, the out-of-plane bending moment in 
the arch can be calculated as a beam on five supports, since there are 3 wind bracings.  In real-
ity, the connection between the arch and the arch springs is not fully clamped, so it’s situated 
between a fully clamped connection and hinge connection.  

The method also implies the wind bracings to act as rigid supports. It is necessary to taken 
into account horizontal displacements of the wind bracings, due to the wind. In addition, the live 
load will cause the arches to move in opposite directions, i.e. towards each other. Hence, the as-
sumption of the bracings acting as fixed supports proves to be valid. 

A higher arch stiffness in comparison to the stiffness of the end beam of the bridge deck re-
sults in a clamped connection. A hinged connection  is achieved when the arch stiffness is much 
lower. Reality lies somewhere in the middle of both hypotheses. Finite element calculations 
pointed out that 50% of the moment resulting from a clamped connection might be taken into 
account. 

The out-of-plane bending moment may be determined from the continuous beam analogy, by 
using the slope deflection method. Since the beam rotations of the continuous beam equal zero, 
the unknown parameters of the system are the node rotations. The system thus reduces to the ro-
tational equilibrium of the nodes, as was described in paragraph 2.2.1.2. 
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Figure 6: Out-of-plane moment in the arch. 
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The out-of-plane bending moment is shown in Fig. 6. Despite the fact that the out-of-plane 
bending moment reaches but a fraction of the in-plane bending moment, it appears of 
importance to take into account the effect of this moment, since the imperfections will result in 
a second, supplementary out-of-plane bending moment.  

Although, the incorporation of the out-of-plane bending moment in this method might seem 
somewhat unorthodox, as the bridge deck is flexible when compared to the stiff arch springs, 
the heavily stiffened edge floor beams introduce the lateral bending by the out-of-plane bending 
moment. However clamping of arch springs in the edge floor beam is improving the stability.  

2.4 Out-of-plane bending moment caused by the imperfections 
The normal force acts always at the centroid of the cross section a perfect arch. Hence, in an 
arch with imperfections, the normal force will act with a certain eccentricity will thus generate a 
supplementary out-of-plane moment.  

If the imperfection would exist in a singular location, acting on an infinitesimal part of the 
arch, the supplementary out-of-plane moment caused by the normal force is given by Eq. 11. 

zI
yyNM ⋅∆⋅

=∆  (11) 

Herein ∆y is the imperfection, y the distance to the neutral axis and Iz the moment of inertia 
about the vertical axis. 

The moment ∆M influences the internal forces in the whole beam. The additional out-of-
plane bending moment reaches a maximal value at the location of the imperfection and fades 
out nearing the arch ends, as can also be seen in Fig. 7. If there should act a second moment on 
the beam, the distribution of both moments will influence each other. 

 

 
Figure 7: Distribution of the moment in a continuous beam on five supports, when the external loading is 

only a moment in one single node. 
 
Since the arch shows imperfections across its entire length, and taking into account the above 

considerations, the effect of the imperfections can be calculated as a uniform moment distribu-
tion acting on the arch. At each point of the arch, the normal force shows a certain eccentricity, 
resulting in out-of-plane bending moments. Given the distribution along the arch of all those 
moments disturbs each other, the moment resulting from the imperfections can not be calculated 
using Eq. 11. The resulting moment distribution of all those contributions must be calculated. 

The whole method, described in this paper, for determining the imperfections is based on the 
comparison of the analytical calculated stresses and measured values. Hence, the imperfections 
in the measurement locations is assumed to be an unknown, and between two measurement lo-
cations a linear distribution is accepted between these two values. The accuracy of the method 
depends on the number of subdivisions taking into account for the calculation of the out-of-
plane bending moment, caused by the imperfections. 

The calculation of the moment distribution caused by the imperfections can also be done by 
the slope deflection method. In contrast with the calculation of the out-of-plane bending mo-
ment, the continuous beam must be divided in separate beams having external moments at the 
hinge. Hence, the number of beams in the system will depend on the number of subdivisions of 
the arch. Thus, the system can be solved by using the rotational and translational equilibriums. 

The resulting out-of-plane moment is still a function of the unknown imperfections. 
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2.5 Imperfections 
The normal stresses in the four corners of the arch section can be calculated from the normal 
force, the in-plane bending moment and the out-of-plane bending moment, resulting from the 
transversal bending of the bridge deck and the imperfections. Since the latter is still a function 
of the unknown imperfections, the resulting stresses are similar. These stresses can be compared 
to the measured ones or those derived from the finite element model. The unknown imperfec-
tions can then be calculated using this comparison, as shown in Fig. 8. 
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Figure 8: Resulting imperfections. 

3 CONCLUSION 

An analytical calculation method based on the determination of all internal forces has been pro-
posed. Although the method uses some simplifications, it describes the imperfections rather 
well. The analytical calculation allows distinguishing between the various effects of the stress 
resultants. The most important contribution of the method, proposed in this paper, concerns the 
out-of-plane bending moment caused by the imperfections, which is calculated in detail. How-
ever, these imperfections influence the stresses in the entire arch and not only at one point in the 
arch. 

Because of these encouraging results, extensive further research will be undertaken in order 
to prove in a more general way the relevancy of imperfections and to keep improving these ana-
lytical calculations 
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