
 
 
 
 

1  INTRODUCTION 

In this work we analyze the behavior of masonry arch-structures under vertical loads applied out 
of their middle plane through a very simple numerical method, already described in previous 
works and used with success by the authors for determining the collapse load multiplier of other 
typologies of masonry structures discretized in rigid blocks, such as panels and domes under 
increasing vertical or horizontal loads, and arches subjected to increasing loads applied in the 
middle plane. (Anselmi et al. 2004; Anselmi et al. 2006a, b; Anselmi et al. 2009a, b, c; De Rosa 
and Galizia 2007).  

The masonry arch-structures are thought made of stones even dry assembled or connected 
with joints filled by mortar, modelled in rigid voussoirs.  

With the computer program we have calculated the collapse multiplier of live load when the 
masonry arch is subjected booth to one force and to two forces applied on the extrados of the 
generic voussoirs, with variable eccentricity e from the middle plane of the arch.   

The collapse load multiplier is evaluated utilizing the Static Theorem of Limit Analysis 
through a procedure of optimization constrained to respect of the equilibrium conditions and of 
the yield domains; we assume the following mechanical features on the contact interfaces: 

(1) inability to carry tension; 
(2) limited compressive strength;  
(3) provision for blocks to slide with dilatancy. 
The results obtained, with regard both to the values of the load multiplier and to the collapse 

mechanisms, appear encouraging because they seem “coherent”. 

2  THE PLANNING OF THE PROBLEM  
2.1  The equilibrium conditions for the single voussoir  
With reference to an arch with variable thickness, the generic voussoir (Fig. 1) is subjected in its 
centre of gravity to the own weight P and on the centroid of the generic interface to the six 
stress resultants - referred to the local reference frame n, r and t - named normal force Nn (or 
simply N), shear forces Tt and Tr, twist moment Mn, bending moments Mt and Mr, respectively 
applied on the interfaces i and j and expressed by:  
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In Fig.1 we have denoted with b the width of the arch, while with si and sj the thickness of the 
interfaces i and j respectively. 
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Figure 1 : Generic voussoir. Local and global reference frame. Stress resultants on the generic interface j. 
 

The equilibrium conditions for the generic voussoir, in the global reference frame x, y and z, are 
so formulated: 

0 1
e e e eα+ + =Α Χ F F 0                                                  (1) 

where Ae is a matrix (6x12) of the coefficients of the unknown stress resultants Xe depending on 
lying and on the dimensions of the voussoir, F0

e is the vector of the dead loads and F1
e the 

vector of the live load - when is present on the voussoir - increasing by the multiplier α. 

2.2  Yield domain for the generic interface 
The stress resultants on the generic interface j have to respect in all eighteen yield conditions of 
the material and precisely twelve conditions for rocking domain (Fig.2a) and six conditions for 
sliding domain (Fig.2b) as showed later on.  
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Figure 2 : Limit surface for rocking.       Figure 3 : Limit surface for sliding.  
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2.3  Yield domain normal force N - bending moment M 
The closed parabolic N-M yield domain of Fig.2 has been opportunely replaced by a piecewise 
linear yield domain having six sides.  

Therefore, with reference to the two bending moments, we impose six conditions for the yield 
domain (N – Mt):   

0MN
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t
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bss jj ≤±−                     (2) 

and six for the yield domain (N – Mr): 
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being σ0 the compressive stress limit. 

2.4  Yield domain N – shear force T 

This domain defined by a cone, with axis coinciding with the N-axis has been opportunely 
replaced by a piecewise linear yield domain having four sides. Therefore we impose four 
conditions making reference to the Cartesian components Tt and Tr of T:   

0TNtan t0 ≤±ϕ                                                        (4) 

0TNtan r0 ≤±ϕ                                                        (5) 

Thus, in Fig.3, T coincides with the generic component Tt or Tr, whereas ϕ coincide with the 
angle of friction ϕ0.  

2.5  Yield domain N - twisting moment Mn 

Denoting with τ° b2 sj /4 the moment Mn of an couple of forces T°= τ° b sj /2 having arm b/2 
(Fig.4), we impose the following two conditions: 

0MN
4

tan n0 ≤±ϕ
b                                                    (6) 

eing τ° the limit tangential stress, N = σ b sj and τ°/σ = tanφ0 the yield condition between limit 
tangential stress τ° and normal stress σ in the domain defined by the cone with axis coinciding 
with the σ-axis. 
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Figure 4 : Generic voussoir. Tangential limit stress τ° and normal stress σ on the generic interface j. 

3  GOVERNING CONDITIONS  

If n and m are respectively the number of the voussoirs and of the interfaces, the equilibrium 
conditions are: 
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0F  F XA 10 =++ α                                                     (7) 

and the yield domain’s conditions are: 
0BDXY ≤−=                                                        (8) 

where A is a (6n x 6m) matrix, X is a 6m vector, F0 and F1 are 6n vectors, α  is the unknown 
collapse multiplier, D is a (18m x 6m) matrix and B is a 18m vector of known terms. 
The problem is resolved researching the maximum α subject to (7) and (8), with α ≥  0.  

4  THE EVALUATION OF COLLAPSE MECHANISM  

Once the multiplier α has been calculated we can obtain the collapse mechanism having in 
account the conditions: 

ΔuA =T                                                              (9) 
and of the flow rule: 

λDΔ T=                                                             (10) 
being u the vector of the degrees of freedom (six for every voussoir), Δ  the vector which 
collects the displacements between the interfaces (six for every interface) and λ the vector of the 
generalized strain rates associated to the yield conditions (18 for every interface).  
We have pursued both the kinematic and static solution making use of Excel. 

5  APPLICATIONS  

In order to evaluate the influence of live vertical load F applied out of middle plane of the arch, 
in this first approach we have studied an arch-bridge with semicircular profile having middle 
radius R=6m and springer angle β= 30°, discretized in eleven rigid voussoirs (Fig.5).  

We have considered three different load conditions: in the first one, only one live load F is 
applied on a generic single voussoir; in the second and in the third condition two equal live 
loads F are applied respectively once on two generic near voussoirs but with a voussoir 
unloaded among of them, and once on two generic voussoirs symmetrically placed with respect 
to the keystone.  
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Figure 5: arch discretized in eleven voussoirs 
 
The live loads lie always in vertical planes orthogonal to the middle plane of the arch, each of 
them passing for the centroid of the extrados face of the generic voussoir.  

The live loads eccentricity has been expressed by e=d(b/2), being b the width of the arch and 
d an adimensional parameter varying from zero to one. In all the applications it has been 
assumed tanϕ0 = 0.4 and specific gravity γ=15.69 KN/m3. 
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5.1  One live load F on a generic voussoir 
We have considered one load F increasing through the multiplier α applied time to time on a 
generic voussoir, beginning from the voussoir 2 until the keystone (voussoir 6), and varying d 
from zero to one. The results obtained are reported in Fig.6. The Fig.7 shows instead the 
diagrams alfa - voussoir loaded, for fixed values of d.  
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Figure 6 : α−d diagram, with one live load F on different voussoirs 
 
By way of example the Fig.8 and 9 show respectively the collapse mechanisms for the arch 
subject to load F applied on the voussoirs 4 and 6, once with d=0 and once with d=1. 

At last, in the case of the vertical load F applied on the keystone, we have evaluate the 
influence of friction coefficient tanϕ0 - with values ranging from 0.2 to 0.7 - once with d=0 and 
once with d=1. The diagram (Fig.10) shows that the collapse multiplier increases when tanϕ0 
increases, until it stabilizes for values of tanϕ0 such that do not arise sliding crisis but rocking 
crisis only. 
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Figure 7 : α − load position diagram, for fixed values of d  
 

 
(a)                     (b) 

 
Figure 8: collapse mechanisms for the arch subject to load F applied on the voussoir 4. (a) d=0 , (b) d=1 
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(a)                       (b) 
 

Figure 9: collapse mechanisms for the arch subject to load F applied on the voussoir 6. (a) d=0 , (b) d=1  
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Figure 10: α−tanφ0 diagram with live load F on keystone, for d=0 and d=1 

5.2  Two vertical loads F on two near voussoirs with a voussoir unloaded among of them  
We have considered two equal live loads F applied on two near voussoirs but with a voussoir 
unloaded among of them, increasing through the multiplier α and with eccentricity d variable 
from zero to one. The Fig.11 shows, for every load condition beginning from the voussoirs 1-3 
until the voussoirs 5-7, the diagram of α for d=0 and d=1.  
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Figure 11: load position diagram with live load F on two near voussoirs with a voussoir unloaded among 
of them, for d=0 and d=1 
 
By way of example the Fig.12 shows the collapse mechanisms for the arch subject to two loads 
F applied on the voussoirs 3-5, once with d=0 and once with d=1. 
 

 
 (a)                     (b) 

 
Figure 12: collapse mechanisms for the arch subject to load F applied on the voussoirs 3-5. (a) d=0 , (b) 
d=1  
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5.3  Two vertical loads F on two generic voussoirs symmetrically placed with respect to the 
keystone 
We have considered two loads F applied on two voussoirs symmetrically placed with respect to 
the keystone, increasing through the multiplier α and with eccentricity d variable from zero to 
one. The Fig.13 shows, for every load condition beginning from the voussoirs 1-11 until the 
voussoirs 5-7, the diagram of α with d=1. The Fig.14 shows, for every load condition, the 
diagram of α with d increasing. 
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Figure 13 : α − load position diagram with live loads F on two voussoirs symmetrically placed with 
respect to the keystone, for d=1 
 
By way of example the Fig.15 and 16 show the collapse mechanisms for the arch subject to two 
loads F with eccentricity d=0 and d=1 applied on the voussoirs 3-9 and 5-7 respectively.  

Lastly, the Fig.17 shows the collapse mechanisms for the arch subject to two loads F on the 
voussoirs 4-8. In this particular case -unlike all previous cases examined in which the rocking 
crisis arise for small values of the compressive strength corresponding to the two straight lines 
near to the M-axis in Figure 2-, for d tending to zero, the compression strengths reach very high 
values and crisis for crushing occur (lines parallel to N-axis in Fig.2).  
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Figure 14 : α − d diagram with live loads F on two voussoirs symmetrically placed with respect to the 
keystone, for different loads positions.  
 

 
(a)                       (b) 
 

Figure 15: collapse mechanisms for the arch subject to load F applied on the voussoirs 3-9. (a) d=0, (b) 
d=1  
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(a)                        (b) 
 

Figure 16: collapse mechanisms for the arch subject to load F applied on the voussoirs 5-7. (a) d=0 , (b) 
d=1  
 

 
(a)               (b)               (c)              (d) 

 
Figure 17 : collapse mechanisms for the arch subject to load F applied on the voussoirs 4-8.  
(a) d=0-0.62 , (b) d=0.63-0.64 , (c) d=0.65-0.76 , (d) d=0.77-1 

6  CONCLUSIONS 

In this work we have evaluated the collapse multiplier of a masonry arch-bridge with 
semicircular profile having middle radius R=6m and springer angle β= 30° discretized in eleven 
rigid voussoirs under vertical live loads applied out of their middle plane. The collapse load 
multiplier has been obtained utilizing the static Theorem of Limit Analysis through a procedure 
of optimization constrained to respect of equilibrium conditions and of yield domains, under the 
following mechanical features: inability to carry tension for the contact interfaces, limited 
compressive strength at interfaces, provision for blocks to slide with dilatancy.  

We have considered three different load conditions. In the first condition, only one live load 
F is applied on a generic single voussoir; in the second and in the third one two equal live loads 
F are applied respectively once on two generic near voussoirs but with a voussoir unloaded 
among of them, and once on two generic voussoirs symmetrically placed with respect to the 
keystone. We have also considered the influence of the angle of friction ϕ0.  

The computer program compiled involves a limited number of unknowns and both the load 
multiplier and the collapse mechanism has been obtained easily through the Excel's solver. Even 
though at this moment our applications are related always to the same arch, the program allows 
easily to change geometric parameters, voussoirs number and also to consider the fill and 
possible distributed vertical up-loads. 

The results obtained confirm the expectations: when the eccentricity e tends to the edge of 
arch, the load multiplier decreases and a kinematic mechanism out of the middle plane arises.  

Currently it has been possible to compare our results only with those obtained by Livesley 
(1992) and, as regards the qualitative aspects, the comparison seems to be very comforting. 
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