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SUMMARY 
Concrete filled steel tubular arch(CFST) bridges have been widely built worldwide in the 
past two decades. However, studies on the probability-based stability design of this type 
of bridges are limited. Therefore, an inverse finite element reliability method (FERM) is 
presented to solve the in-plane stability safety factors of CFST arches. The cooperation 
of self-programming and general finite element software is utilized to implement the 
method.  In  this  method,  a  safety  factor  is  introduced  into  the  limit  state  equation.  For  
different target reliability indices, safety factors for in-plane stability are solved based on 
the inverse reliability analysis. The results show that: the method is of good efficiency 
and applicability; loading styles and steel ratios have little effect on safety factors for the 
in-plane stability of CFST arches; the influences of resistance and load uncertainties on 
the in-plane stability factors are significant which should be concerned in design. 
 
Keywords: CFST arch, in-plane stability, inverse reliability, FERM, safety factor 

assessment.  
 
1. INTRODUCTION 
Concrete-filled steel tubular (CFST) structures have been widely used in arch bridges 
over the past 20 years due to the advantages of light weight, high ultimate compressive 
strength, convenience of construction and good aesthetic appearance. According to 
incomplete statistics, more than 400 CFST arch bridges have been constructed 
worldwide and 300 of them are built in China [1]. Investigations on both theory and 
experiment of CFST arch bridges have attracted some attentions from researchers and 
some remarkable conclusions have been obtained [2-3]. 
However, the present investigations of CFST arch bridges are concentrated on the 
applications of new bridge types and new techniques. The gap between the rapid 
development of practical engineering and the slowly development of theoretical research 
becomes more and more serious. 
Moreover, CFST arch bridges have become a member of large span bridges. For the 
properties of high strength and large span, the arch ribs are commonly quite slender, and 
the problem of stability becomes more significant. However, studies on the stability 
design of this type of bridges are limited, especially for the in-plane nonlinear stability. 
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The inverse reliability problem is presented to directly seek the value of design 
parameters corresponding to specified reliability levels. The problem used to be solved 
by the trial and error method by using a forward reliability method and interpolating the 
parameters at the required reliability. For the complexity of the trial and error method, 
the Hasofer-Lind-Rackwitz- Fiessler (HLRF) iterative algorithm was proposed by Der 
Kiureghian et al [5]. The efficiency and applicability of the inverse reliability method 
have been proved by Li and Foschi, using several examples related to the earthquake and 
offshore engineering [6]. The inverse reliability method has also been applied in the 
assessment of main cable safety factors for long-span suspension bridges and the 
efficiency was verified by some numerical examples [7]. 
In the present work, the inverse reliability method is introduced in the safety factors 
assessment for in-plane stability of CFST arches. Safety factors for different parameters 
are obtained using the inverse finite element reliability method (FERM). 
 
2. PRINCIPLES OF INVERSE RELIABILITY ANALYSIS 
The inverse reliability problem arises when one is seeking directly the value of design 
parameters corresponding to specified reliability levels. The inverse reliability problem 
is defined by the following set of equations[8]. 
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where u  is the standard normal vector, T  is the target reliability index, u  is the 
gradient operator with respect to u  and Eq. 2 states that the solution *u  must be an 
origin-project point, which is the optimality condition for a fixed  under the condition 
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where, kd  is the search direction vector, k  is the step size. 
The solution of  Eq. 1, Eq. 2 and Eq. 3 is 
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Then kd  can be expressed as 
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The convergence criterion used in the inverse reliability analysis is 
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3. LIMIT STATE EXPRESSIONS OF IN-PLANE STABILITY DESIGN 
The limit state expression for stability can be expressed as 

/ 0R K S  (9)
where R is the structural resistance, K is the stability safety factor and S is the load effect. 
Then limit state expressions for elastic theory and nonlinear theory can be respectively 
expressed as 

cr 1/ 0P K S  (10)

u 2/ 0P K S  (11)
where Pcr is the elastic stability bearing capacity, Pu is the nonlinear stability bearing 
capacity, K1 is the safety factor for elastic theory, K2 is the safety factor for nonlinear 
theory. 
Consequently, the basic form of limit state equation for inverse reliability analysis can be 
expressed as 

cap cap cap cap( , ) ( , ) ( ) ( )G y g y y r y Ru x x u  (12)
where ycap is a deterministic design parameter. 
By introducing the safety factors, the typical form of limit state equation for inverse 
reliability analysis is 

min min min min( , ) ( , ) ( ) ( )G g r Ru x x u  (13)
Then Eq. 5 can be rewritten as 

T
( , )
( , )

k k

k k

R
R

u

u

uu
u

 (14)

893

8th International Conference 
on Arch Bridges

October 5-7, 2016, Wrocław, Poland



 
 
For  the  explicit  form  of  limit  state  functions  (LSFs),  the  values  and  gradients  of  LSF  
could be easily obtained. While for the implicit form of LSFs, the finite element analysis 
is utilized. The gradients are calculated by the central difference method: 

( ) ( )
2

g g y y g y y
y y

 (15)

 
4. PROBABILITY MODELING 
It is inevitable that the structural resistance is affected by various uncertainties, such as 
material properties, geometric parameters and calculation modes. For the reliability 
analysis of arch stability, the statistics of the basic random variables (RVs) are listed in 
Tab. 1. 
 

Table 1. Statistics of basic RVs [9-12]. 

RV Distribution Type COV 
fcu Lognormal 0.13 
fy Lognormal 0.083 
Ec Lognormal 0.10 
Es Lognormal 0.06 
D Normal 0.0135 
T Normal 0.035 
y0 Normal 0.5 
P Normal 0.08 

 
The meanings of the parameters in Tab. 1 are: fcu is the concrete compressive cube 
strength, fy is the yield strength of steel tube, Ec means the elastic modulus of concrete, 
Es means the elastic modulus of steel, D is the outer diameter of steel tube, t is the wall 
thickness of steel tube, y0 is the initial geometric imperfection of arches and P is the load 
effect. COV is the short for coefficient of variation. 
 
5. PROCEDURES OF INVERSE RELIABILITY METHOD 
While searching the design points in the inverse reliability method, the values of LSFs 
and its gradients are calculated in every iterative step via finite element analysis. 
Therefore, the efficiencies of the inverse reliability method rely on the efficiencies of 
finite element analysis and the times of iteration. For nonlinear finite element analysis, 
the  general  finite  element  software  ABAQUS  is  utilized,  and  the  cooperation  of  
MATLAB and ABAQUS is realized via the application programming interface (API) in 
MATLAB. The procedure of FERM is illustrated in Fig. 1. 
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Fig. 1. Flow chart of inverse reliability method. 

 
6. CASE STUDIES 
6.1. Model parameters 
Two CFST parabolic arch models for different loading styles are selected as illustrated 
examples, as shown in Fig. 2 and Fig. 3. The span of the arch is 4.6 m and the rise-to-
span ratio is 1/3. The outer diameter of the steel tube is 76 mm and the wall-thickness is 
3.792 mm. The elastic modulus of the concrete is 36.8 GPa, and the elastic modulus of 
the steel is 206 GPa. 
 

 
Fig. 2. Loading at L/2. 
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Fig. 3. Loading at L/4. 

 
6.2. Results 
6.2.1. Finite element analysis 
For the two loading styles, comparisons of the experimental results and the mathematical 
results are listed in Tab. 2. 
 

Table 2. Comparisons of experimental results and mathematical results. 

Loading styles Experiment/kN Finite element/kN 
ABAQUS ANSYS Self-programming 

Loading at L/4 31.90 32.53 32.62 32.80 
Loading at L/2 42.07 46.23 46.46 47.90 

 
 
The results show that: compared with ANSYS and the self-programming, the results of 
in-pane ultimate stability bearing capacity calculated by ABAQSUS agree well with the 
experiments. 
 
6.2.2. Inverse reliability analysis 
K2 for different loading styles with considering resistance uncertainties are summarized 
in Tab. 3. 
 

Table 3. K2 for different loading styles. 

Target reliability index Loading styles 
Loading at L/4 Loading at L/2 

3.7 1.35 1.34 
4.2 1.40 1.39 
4.7 1.46 1.45 
5.2 1.52 1.50 

 
 
The results show that: K2 varies from 1.34~1.52 for different target reliability indices and 
loading styles have little effect on K2. 
K2 for different steel ratios with considering resistance uncertainties are summarized in 
Tab. 4. 

P 
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Table 4. K2 for different steel ratios. 

Target reliability index Steel ratios 
5% 10% 15% 20% 

3.7 1.37 1.35 1.35 1.35 
4.2 1.43 1.41 1.40 1.40 
4.7 1.50 1.47 1.46 1.46 
5.2 1.56 1.53 1.52 1.52 

 
The results show that: K2 varies from 1.35~1.56 for different target reliability indices and 
steel ratios have little effect on K2. 
Comparisons of K2 and K2  are shown in Fig. 4. K2 is the safety factor with considering 
resistance uncertainties while K2  is the safety factor with considering both resistance 
uncertainties and load uncertainties. 
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Fig. 4. Comparisons of K2 and K2 . 

 
The results show that: K2  varies from 1.61~1.86 for different target reliability indices 
which are higher than K2. 
 
7. CONCLUSIONS 
The inverse finite element reliability method is presented to solve the safety factors for 
in-plane stability of CFST arches. The cooperation of programming and general finite 
element software is utilized to implement the method. For different design parameters, 
in-plane stability safety factors with and without considering load uncertainties are 
obtained based on arch models. 
The results show that: the method above is of good efficiency and applicability. Loading 
styles and steel ratios have little effect on in-plane nonlinear stability safety factors of 
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CFST arches. For the parameters discussed in this paper, K2 varies from 1.34~1.56 while 
K2  varies from 1.61~1.86. Therefore, effects of both resistance uncertainties and load 
uncertainties on in-plane stability factors are significant which should be concerned in 
design. 
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