
 
 

1 INTRODUCTION 

A masonry arch consists of masonry blocks and mortar joints. Blocks have high strength in 
compression and low strength in tension while mortar has generally low strength. The men-
tioned variation in the mechanical properties of the bridge's materials makes the study of them 
quite demanding and leads to the development of a number of theories in order to represent as 
accurately as possible, the real mechanical behaviour of the stone bridge. 

One classical method developed for the study of stone arches was established by Heyman 
(1982). It is based on the assumption that an arch fails by the development of a collapse mecha-
nism with four hinges. Several methods have then proposed for the assessment of the masonry 
arch. A part of them are related with the limit analysis of block structures with a frictional con-
tact interface law. Melbourne and Gilbert (1995) confirmed that frictional assumptions are very 
important in multiring arches. Orduna and Lourenco (2005a, b) developed two- and three-
dimensional models of discrete structures (like stone arches) and they took into account torsion 
failure mode. They also included in their study reinforcement elements. Other methods are 
based on the development of a finite element model in the framework of the incremental analy-
sis. Crisfield (1984, 1985) proposed a model in which the arch is simulated with beam elements. 
He took into account the fill over the arch as well as the active and passive soil pressure induced 
by fill, by using non - linear, one dimensional elements. Lofti and Shing (1994) developed a 
discrete finite element model for the description of the mortar joints of masonry structures. 
They simulated mortar with interface elements with a non linear constitutive law. Molins and 
Roca (1998) used a three-dimensional finite element model for the investigation of the behav-
iour of stone arches. They applied the Mohr – Coulomb criterion for the shear failure of the ma-
sonry, and the perfect - plastic constitutive law for the simulation of the tensile failure mode. 
Cavicchi and Gambarotta (2005) simulated arches and piers with beam elements having zero 
tensile strength. For the fill they used two-dimensional plane strain finite elements with the 
Mohr - Coulomb failure criterion. For the arch - fill interaction they applied interface elements. 
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They presented applications in a single span as well as in a multi - span masonry bridge. From 
another point of view, Ng and Fairfield (2004) proposed a modification of the collapse mecha-
nism method by considering the interaction between the arch deflections and the backfill pres-
sures. 

In this study a comparison between two models developed for the investigation of the me-
chanical behaviour of stone arches is presented. According to the first model, the ultimate fail-
ure load of a stone arch bridge is found by the usage of a discrete model formulation. In particu-
lar, the geometry of the structure is divided into a number of interfaces, perpendicular to the 
center line of the ring. Those interfaces are uniformly distributed along the arch. Unilateral con-
tact law governs the behaviour in the normal direction of an interface, indicating that no tension 
forces can be transmitted in this direction. The behaviour in the tangential direction takes into 
account that sliding may or may not occur, by the usage of the Coulomb friction law. The back-
fill can be included in this model. It is simulated with two dimensional finite elements. The in-
teraction between arch and fill is also simulated by a unilateral contact - friction interface. The 
either - or decisions incorporated in the unilateral contact and friction mechanisms make the 
whole mechanical model highly nonlinear. Due to the presence of non - differentiable functions 
within these models, they are characterized as nonsmooth mechanics models (Mistakidis and 
Stavroulakis 1998). For practical applications carefully tuned path - following iterative tech-
niques are used for the numerical solution. Furthermore, the limit analysis problem is related to 
the solvability of the underlying mechanical problem using analogous theoretical results con-
cerning the solvability of variational inequalities and complementarity problems (Stavroulakis 
et al. 1991). The main idea of the second model is to propose a simplified approximate proce-
dure, easily understandable from the designers. In this framework, a non-linear incremental ap-
proach is adopted, which considers masonry as a no - tension material. The procedure is based 
on a simplified two-dimensional finite element discretization of the masonry bridge. The arch 
barrel is modelled with four nodes, plane elasticity finite elements and the fill with non-linear 
springs.  

Results of the comparison between the two models will prove to be quite interesting, as they 
will demonstrate how a more complex finite element model interacts with a simplified model, 
both useful for the assessment of stone arches. 

2 THE FEM MODEL WITH  UNILATERAL CONTACT - FRICTION INTERFACES 
2.1 Frictional - contact mechanics 
The behaviour in the normal direction of an interface is described by the unilateral contact 
model. In particular, let us consider the boundary of an elastic body which comes in contact 
with a rigid wall. Let u be the single degree of freedom of the system, g be the initial opening 
and tn be the corresponding contact pressure in case contact occurs. The basic unilateral contact 
law is described by the set of inequalities (1), (2) and by the complementarity relation (3), 
(Stavroulakis et al. 1991, Panagiotopoulos 1985) 

h = u − g ≤ 0 ⇒  h ≤ 0 (1) 

−tn ≥ 0 (2) 

tn(u − g) = 0 (3) 
Inequality (1) represents the non penetration relation, relation (2) implements the requirement 
that only compressive stresses (contact pressures) are allowed and equation (3) is the comple-
mentarity relation according to which either separation with zero contact stress occurs or con-
tact is realized with possibly non - zero contact stress. 

The behaviour in the tangential direction is defined by a static version of the Coulomb fric-
tion model. Two contacting surfaces start sliding when the shear stress at the interface reaches a 
maximum critical value equal to 

tt = τcr = ± µ | tn | (4) 
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where tt, tn are the shear stress and the contact pressure at a given point of the contacting sur-
faces respectively and µ is the friction coefficient. There are two possible directions of sliding 
along an interface, therefore tt can be positive or negative depending on that direction. Further-
more, there is no sliding if | tt |< µ | tn | (stick conditions). The stick - slip relations of the fric-
tional mechanism can be mathematically described with two sets of inequalities and comple-
mentarity relations, similar to (1)÷(3), by using appropriate slack variables (Mistakidis and 
Stavroulakis 1998). 

2.2 Formulation and solution of the unilateral contact - friction problem 
For the frictional - contact problem the Virtual Work equation is written in a general form 

∫∫∫∫∫ ⋅+⋅+⋅+⋅=⋅
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where tn and tt are the normal and tangential traction vectors on the actual contact boundary S´, 
q is the stress tensor, δe is the virtual strain tensor, δu is the virtual displacement vector and t, f 
are the surface and body force vectors, respectively. 

The nonlinearity in the unilateral contact problem is introduced by the variational inequality 
(Panagiotopoulos 1985) 

δu · tn ≤0  (6) 
and the nonlinearity in the frictional problem is introduced by the variational inequality 

δut · tt ≤ max (δut · ttcr ,− δut · tt
cr) . (7) 

Here ttcr is the vector of the critical shear stresses τcr, in the tangential direction of the interfaces. 
Relation (7) implies that no slip occurs when | tt |< τcr = µ | tn | while slip starts when tt = τcr. 
Lagrange multipliers are also used in the Principle of the Virtual Work to enforce sticking con-
ditions. The arising set of the nonlinear equations is solved by the Newton – Raphson incre-
mental iterative procedure, or by specialized algorithms (for linear or nonlinear complementar-
ity or nonsmooth optimization problems). 

For example, the frictionless unilateral contact problem takes the following matrix form 
Ku + NT r = Po + λP , Nu − g ≤ 0, r ≥ 0, (Nu − g)T r = 0  (8) 

Equation (8.a) expresses the equilibrium equations of the unilateral contact problem, where for 
simplicity frictional terms are omitted. K is the stiffness matrix and u is the displacement vector. 
Po denotes the self - weight of the structure and P represents the concentrated live load. N is an 
appropriate geometric transformation matrix and vector g contains the initial gaps for the de-
scription of the unilateral contact joints. Relations (8.b,c,d) represent the constraints of the uni-
lateral contact problem for the whole discretized structure and are based on the local description 
given by relations (1), (2), (3). The enforcement of the constraints is achieved by using La-
grange multipliers. Thus, r is the vector of Lagrange multipliers corresponding to the inequality 
constraints and is equal to the corresponding contact pressure (-tn). The problem described 
above is a nonsmooth parametric linear complementarity problem (LCP) parametrized by the 
one - dimensional load parameter λ. All required quantities can be calculated by using finite 
element techniques. Using path - following the solution of the problem can be calculated in the 
interval 0 ≤ λ ≤ λfailure, where λfailure is the value of the loading factor for which the unilateral con-
tact problem does not have a solution. This is the limit analysis load. The analysis reported here 
has been completed within the ABAQUS code (see Drosopoulos et al. 2006 for further details). 

3 A FEM MODEL WITH ADAPTIVE CRACK ELEMENTS 

Various kinematic approaches have been developed in the literature (Faccio et al. 1995), where 
the load carrying capacity of the bridge is calculated from a limit condition in which an ade-
quate number of hinges reduces the structure to a mechanism. It is implicitly assumed that 
hinges due to no-tension behaviour may be activated in the arch barrel, while the material may 
sustain unbounded, or very large, inelastic strains. In order to overcome these drawbacks, and 
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take into account the non-linear response of the masonry, complex load settings and the actual 
bridge geometry, more detailed models are needed such as the ones provided by non linear in-
cremental two and three-dimensional FEM procedures (Crisfield 1984). A relatively recent de-
velopment in the analysis of masonry arch bridges has been the use of finite element techniques. 
Towler et al. (1982) showed the potential of this general approach by computing load deflection 
curves and collapse loads for an arch modeled with one-dimensional beam elements to represent 
the arch barrel. The presence of fill was considered only as a dead load and no further soil-
structure interaction effects were modeled. Crisfield (1985) later introduced non-linear spring 
elements in an attempt to model, in a simplified way, the lateral resistance from the soil. Some 
smeared, three-dimensional crack models have been used here in order to take into account the 
brittle behaviour of masonry, as they have been implemented in the computer code ANSYS. In 
such a model the cracking process is completely introduced via some constitutive (concrete-
like) laws which affects the material stiffness at every integration point. These criteria requires 
the determination of some parameters that cannot be evaluated experimentally in a simple or re-
liable way. 

A simplified numerical procedure for the limit analysis of masonry arch bridges is developed 
in order to take into account, and to evaluate, the arch-fill interaction. The procedure is based on 
a simplified two-dimensional finite element discretization of the masonry bridge. The arch is 
modeled by means of plane stress elastic elements and the fill is modeled by means of non-
linear links. Interface (gap) elements are also applied on the connection between the fill area 
and the extrados of the arch. The main idea of the present approach is to propose a simplified 
approximate procedure, suitable for design engineers. The first researcher that introduced non-
linear spring elements for the modelling of the fill material and for the modelling of the lateral 
resistance of the soil was Crisfield (1985). The spring stiffness were termed the sub-grade 
modulus, and were initially pre-compressed to the equivalent pressure at rest. The maximum 
horizontal pressure was limited by the active or passive pressures depending upon the type of 
movement of the arch. In this work gap elements are used in order to take into account the pos-
sible sliding between arch barrel and fill material. The non-linear behaviour of the arch barrel, 
modelled by two-dimensional four-nodes elastic elements, is reproduced by means of gap ele-
ments, based upon the original idea of Castigliano. At each load increment the stress behaviour 
of this plane element is checked at every joint, and if the stress is not admissible for the ma-
sonry material (that is, tensile stresses arise) the corresponding joints that connect the adjacent 
elements are substituted by contact elements. This is an iterative procedure, implemented inside 
ANSYS.  

4 A THEORETICAL COMPARISON BETWEEN THE TWO APPROACHES 

A significant difference between the two models is introduced by the fact that in the model with 
the gap elements the development of the cracked area is not imposed "a priori" but follows the 
actual behaviour of the arch when loading is increasing from zero to the final load. Of course 
the position of the gap elements is determined by the mesh size of the model. In contrast, the 
contact model uses fixed positions for the interfaces of the arch indicating that the positions of 
the potential cracks are imposed "a priori". The two models converge for fine discretizations. 

Furthermore, the fill is simulated in two different ways. In the model with the gap elements, 
non linear springs are used. This simplified procedure is particular useful for a first quick as-
sessment of the behaviour of the stone arch. This is attributed to the fact that springs contribute 
to a relatively simple and fast  numerical solution. On the other hand, the contact model uses 
two dimensional finite elements with the Mohr - Coulomb failure criterion. This is a more com-
plex way of simulating the fill over the arch. It gives information about the failure of the fill and 
a more realistic representation of it, but it demands more computational time and effort.  
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5 APPLICATION ON A REAL ARCH 

The case study analyzed corresponds to the Prestwood bridge (see Fig. 1), a single-span bridge 
tested to collapse within the experimental research on masonry bridges supported by the Trans-
port Research Laboratory (Page 1983). 

 

 
Figure 1 : Prestwood bridge before destructive test (DT) 

 
This bridge has a span length equal to 6.55 m, with upper rise 1.42 m. The vault thickness is 

0.22 m and comprises a single ring of bricks laid as headers; the fill depth at the crown is 0.165 
m and the total bridge width is 3.800 m. The load is applied on a strip of the road surface along 
the full width of the bridge between the parapets at a point where the lower load value leading 
to failure was expected. The latter has been evaluated by assuming that the arch would fail as a 
four hinged mechanism and was, then, applied at the quarter-span of the bridge. The strip was 
0.30 m wide in order to distribute the load and to avoid a premature failure of the fill. The load 
has been applied by means of hydraulic jacks, while the required reaction for the load was pro-
vided by the weight of concrete blocks on a steel frame above the bridge (see Fig. 2). 

 

 
Figure 2 : Collapse mechanism 

 
The fill density is 20 kN/m3 and the masonry density is 20 kN/m3. The experimental collapse 

mechanism of the bridge is shown in Fig. 2 (Page 1983). Tab. 1 reports the parameters used in 
the analysis models. The vault collapse mechanism exhibits four hinges that are clearly visible 
in the picture; the mechanism developed with negligible material crushing. The arch mechanism 
constrains the fill region under the applied load to move downward and the fill at the other side 
of the bridge to move upward. The first visible sign of damage occurred at Pf = 173 kN and the 
experimental collapse load was Pu = 228 kN. 

5.1 Results from the unilateral contact - friction model 
In the framework of the contact model, the fill is simulated with two-dimensional plane strain 
finite elements. The arch - fill interaction is taken into account, as well. In particular, the model 
of the arch with the interfaces developed in previous sections is used. The interaction between 
the arch and the fill is also simulated by a unilateral contact - friction interface. Failure of the 
fill material is representing by the Mohr – Coulomb failure criterion. Concerning the boundary 
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conditions, both the arch and the fill are initially considered to be fixed to the ground. In par-
ticular, the horizontal as well as the vertical boundaries of the fill are fixed. 

For the mechanical properties mentioned here the collapse load which is obtained by the con-
tact model is Pu = 225.4KN which is comparable with the experimental value (228KN). A four 
hinges mechanism arises in the arch, which is the same with the experimental one. In Fig. 3 the 
collapse mechanism obtained by the contact model is shown, suitably scaled to make deforma-
tion visible. The brown color in the fill indicates the region where yield occurs. Both the arch 
and the fill move downward in the left - hand - side of the structure (e.g. the loaded side). As a 
consequence, the side of the bridge opposite to the loading moves upward (the four hinges col-
lapse mechanism of the arch pushes the fill upwards in this side). The hinge number (4) of Fig. 
3 does not appear very close to the right springing but is moved toward the left side. The pres-
ence of the fill in Fig. 3 is responsible for the offset of the hinge’s position. 

 

 
Figure 3 : Four hinges collapse mechanism from the unilateral contact-friction m 

5.2 Results from the adaptive crack element model 
The arch barrel structural elements are modeled with plane42 elements. Gap elements are added 
at the area where tensile stresses arise, due to the applied increasing load. Interaction between 
fill material and arch barrel have been taken into account by means of non linear springs. 

 

 
Figure 4 : Thrust line before collapse 

 
Some parametric analyses have been performed in order to evaluate the influence of the elas-

tic material properties of the arch barrel elements (i.e. Young modulus). The analyses have 
shown that, by neglecting second order effects connected with geometric nonlinearities, the 
elastic material properties are not important for the evaluation of the ultimate load (Loo 1995). 

 
Table 1 : Material properties. 

Fill density γfill 20 kN/m3 
Fill cohesion cfill 10 kPa 
Fill angle of internal friction  φ 37° 
Masonry ring density γm 20 kN/m3 
Masonry compressive strength σm 7.7 N/mm2 

 
The loaded side of the arch moves downward, and the arch mechanism pushes the left side; 

as a consequence, the fill over the left side is moved upward. The first hinge on the left side of 
the arch does not develop at the springing, as it happens in the arch where the fill is heavy but 
not resistant; the presence of the fill constrains the hinge to move upward. This behaviour 
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agrees with the experimental result shown in Fig. 2. The numerical critical load is 225.7 kN, a 
value which is very close to the experimental collapse load Pu = 228 kN. 

The strengthening effects of the fill correspond to a higher exploitation of the strength re-
sources of the arch; in particular, the development of the collapse mechanism predicted by the 
limit analysis requires the development of plastic compressive strains higher than those pre-
dicted by simplified models without fill resistance that could be no longer consistent with the 
masonry behaviour. Fig. 5 shows principal stresses; close to the area where hinge are arising 
there is a local crushing of masonry material but, again, the value reached by the tensional state 
on the arch at the collapse denote that collapse is due to a development of a mechanism rather 
than a global crushing. Fig. 4 shows the thrust line, which is adjacent to the ring of the arch on 
four section denoting that an hinge is opened in that point. The section of the arch that first 
reaches the compressive elastic limit is located under the area where the load is applied. This re-
sult agrees with the experimental behaviour of the bridge and shows that this analysis can be 
applied with a good approximation. 

 

 
Figure 5 : Principal Stress σ11 (kg/m2) before collapse 

5.3 Comparison between the two methods 
An interesting comment can be made by observing the collapse mechanism obtained by the two 
models. In particular, it seems that the position of the hinge number (4) in the right side of the 
contact model, does not coincide with the corresponding hinge in the model with the gap ele-
ments (first hinge in the left side of the model). The latter is developed very near to the spring-
ing while the hinge of the contact model arises at some distance from it. This is attributed to the 
fact that in the contact model both the vertical and the horizontal boundaries of the fill are fixed. 
In contrast, in the model with the gap elements the fill is simulated with horizontal springs 
which permit a movement in the horizontal direction. This corresponds to free vertical bounda-
ries, for the contact model. Indeed, if vertical boundaries of the contact model become free, the 
collapse mechanism will be slightly modified and the particular hinge will be in the same posi-
tion for both models, e.g. very close to the springing. This is shown in Fig. 3. The limit load in 
this case is equal to 223.4KN. As the boundary conditions have been changed, fill parameters 
have to be changed too, in order to obtain the above mentioned limit load. Consequently, angle 
of internal friction has been considered to be equal to 37°, cohesion equal to 10KPa and dilation 
angle equal to 33°. 

6 CONCLUSIONS 
A large number of arch bridges built in Europe during the 19th century are still in service. They 
were built according to codes of practice and design criteria developed for the 19th century 
loads. Most of these bridges that are still in their original configuration are nowadays subjected 
to heavier loads and sometimes show sings of deterioration. Due to their importance for the 
transportation systems, especially for the European railway network, a simplified tool for a reli-
able estimation of their actual load carrying capacity is needed. The structural analysis of ma-
sonry structures has always been a very demanding task. The numerical results shown in this 
paper demonstrate that nonlinear, and in particular unilateral models, can be used for the reli-
able prediction of the ultimate (limit) load and the collapse of masonry bridges. Comparison 
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with experimental results shows that both methods are able to access with good confidence the 
ultimate load for masonry arch structures. With the contact model, where the fill is modelled 
with plane element, is possible also to obtain information about the arising stress and strain state 
of the fill material. The unilateral model cannot supply detailed information about the fill be-
cause of the simplified assumption. Anyway the method is proved to be user-friendly since it 
can be developed by making use of the programming facilities of commercial FE codes and, in 
spite of some approximations on model parameters, it is proved to give good precision and it 
could be an interesting alternative to the standard nonlinear facilities of commercial FEM codes, 
which are generally related to concrete-like materials.  

One should mention that unilateral phenomena arise in a larger number of heritage and 
monumental structures, like domes and vaults (Leftheris et al. 2006). The here proposed tech-
niques can, in principle, be extended to cover more general structures as well. Detailed analysis 
of three-dimensional structures and the effect of dynamical loads will be reported in the future 
elsewhere. 
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