
 

1  INTRODUCTION 

The MEXE method evolved from work undertaken by Pippard in the 1930s which included 
both field and laboratory tests to calibrate theoretical work. During World War II, this research 
was used to develop a quick field method to classify bridges according to their capacity to carry 
military vehicles; this was subsequently adapted for civil use. It has been modified on a number 
of occasions. The current version of MEXE method is recommended in Departmental Standard 
BD21 and Advice Note BA16 by the Department of Transport.  

Over the years there have several attempts to develop assessment methods for masonry arch 
bridges. In recent years the MEXE method has been the subject of some criticism in particular 
with respect to determining the carrying capacity of short span bridges (Havey 2007, 
McKibbins et al. 2006). As part of the UIC ‘Masonry Arch Bridges Project’ to review the 
MEXE method of assessment as applied to railway bridges, an investigation was carried out 
which has allowed several of the assumptions made by Pippard (Pippard 1948) when 
developing the MEXE method to be revisited and all equations derived from scratch 
(Melbourne and Wang 2008).  

This paper presents further development of Pippard’s elastic method for short span arch 
bridges. New equations are introduced and comparisons have been made with the results using 
Pippard’s original equations (Pippard 1948). It also attempts to identify other limits of Pippard’s 
elastic method.  

2  PIPPARD’S ELASTIC METHOD FOR SHORT SPAN ARCH BRIDGES 

Pippard used Castigliano's theorems that the partial derivative of the strain energy, U, with 
respect to a force, is equal to the displacement in the direction of the force. He (Pippard 1948) 
treated the ring as a two-pin parabolic arch with a secant variation of I =I0 secα, as shown in 
Fig.1, where I0 is the second moment of area at the crown. 
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Figure 1 : Pippard’s two-pinned parabolic arch (I =I0 secα) 
 

Additionally, Pippard ignored the axial thrust and shearing force terms in the strain energy 
equation. Hence the strain energy was assumed to be totally dependent upon the flexural 
response of the arch, i.e.  
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where E is modulus of elasticity and ds is increment of length along the arch ring. Thus the 
value of horizontal reaction at the abutment is given by the solution of the equation 
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Total bending moment at x is given by M = Ms – Hy, where Ms is the statically determinate 
bending moment, therefore yHM −=∂∂ . Substitute the relationships into Eq.(2) gives 
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Pippard considered a secant variation of the second moment of area, that is, I =I0 secα. 
Therefore, H is given by 
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where dx is increment of length along span L 
However, for a short span arch with relatively a thicker ring, the axial thrust term in the strain 

energy U should be considered, i.e.  
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where A is the cross section area of the arch ring at any point x. The axial force N at any point x 
is given by 

αcosHN = , αcos=∂∂ HN                                             (6) 

Substituted Eq.(6) into Eq.(5) gives 

W
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Therefore, the horizontal reaction at the abutment becomes 
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For the parabolic arch with a secant variation I =I0 secα, H becomes 
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where dk is increment of length along unit span. 

When the span/rise ratio is fixed, the integration of 3
4

)(cosα is a constant, so λ is in direct 

proportion to ( )2ad .  
Fig.2 shows the changes of λ for different ring thickness and span rise ratio. 
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Figure 2 : Value of λ for different span rise ratio and ring thickness  
 

It can be seen from Fig.2 that for the bridges of the same ring thickness, the influence of 
considering the axial thrust term becomes significant for relatively small span bridges. As the 
span increases, λ gradually drops to zero, which means that there is little difference between the 
results whether including or neglecting the axial thrust term in the strain energy, i.e. Eq.(4) and 
(8) produce the same horizontal reaction at the abutment. With the increase of the ring thickness, 
the value of λ increases correspondingly, indicating that the influence of considering the axial 
thrust term becomes more significant for relatively thicker arch rings. 

Table 1 shows the comparison of equations for live load effects when neglecting the axial 
thrust term in working out the strain energy and when incorporating the effects of axial strain 
energy whilst Table 2 shows the comparison of equations for dead load effects.  

A full derivation of all the equations is presented elsewhere (Wang and Melbourne 2010). 
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Table 1 : Comparison of live load effects 

Pippard’s equations New equations 
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where a is arch central rise, d is ring thickness at the crown, h is fill depth at the crown, L is 
arch span, and ρ is density of the fill and masonry (assumed to be the same). 
 

Table 2 : Comparison of dead load effects  
Pippard’s equations New equations 
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In accordance with Pippard, for a point load W at the crown the compressive stress under the 
combined dead and live load together should not exceed the maximum permitted value of the 
compressive stress fc i.e. 
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Therefore, the limiting value of the point load at the crown derived by Pippard would be given 
by: 
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Similar to Eq.(11), the new limiting value of the point load at the crown will be given by: 
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Therefore, instead of the original formula by Pippard, i.e. Eq.(12), the new limiting value of the 
point load at the crown 

( ) ( )

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++

+

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +

−−−⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

−
=

λ
λ

λλ
λ

ρ

7
3214225

1
1

4271
28421

1
1

1128256

da

a
dh

d
a

a
dhLh

L
hdf

W

c

T    (14) 

Considering that the two wheel loads could exist side by side, which corresponds to an axle load 
for a vehicle of normal track width, the safe axle load is 

WWA 2= or TT
A WW 2=                                               (15) 

Comparing with the safe axle load AW by Pippard (Pippard 1948), the new safe axle load 
T
AW obtained is relatively smaller for short span arch bridges, as shown in Table 3. The 

influence will be dependent upon the span/rise ratio, the ring thickness and the depth of the 
crown cover. 

 
Table 3 Influence of λ on the safe axle load for different span rise ratio 
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Table 3 demonstrate the influence of different span/rise ratio on the safe axle load for a bridge 
with a ring thickness of 500 mm and fill cover at the crown of 300 mm. For bridges with bigger 
ring thickness and fill cover, the influence of considering the axial thrust term will become more 
significant, i.e. much lower carrying capacity will be predicted for the relatively short span 
bridges.  

3  OTHER ISSUES RELATED TO PIPPARD’S METHOD 
3.1  Dead load stress 
It should be pointed out that Pippard’s original formula was based on limiting the compressive 
stress at the crown extrados under the combined dead and live load.  

There are circumstances where either or both of the stress criteria assumed by Pippard i.e. fc = 
1400 kN/m2 and  ft = -700 kN/m2 (negative sign represents tensile stress) could be reached at 
the crown section under the self-weight only, as shown in Fig.3 
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Figure 3 : Stress at the crown due to self weight (d=500 mm, h=300 mm) 
 

It is important to note that Pippard did not consider this case even when his own stress limits 
were exceeded – this will be referred to elsewhere in the paper as ‘overstress’. 

Because Pippard did not considered this ‘overstress’ under the self-weight only, the safe axle 
load predicted using his original formula, would increase for higher spans (upturn of the curve 
for span over 13.5 m for the particular example considered), as shown in Fig.4.  
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Figure 4 : Safe axle load using Pippard’s original formula (d=500 mm, h=300 mm) 
 

If, however, the ‘overstress’ under the self-weight is restricted, then the safe axle load will drop 
to zero for a bridge with a span over 13.5 m in this particular example, as also shown in Fig.4, 
due to the reason that the compressive stress at the crown intrados reaches fc = 1400 kN/m2 
under the self-weight only.  

The ‘overstress’ under the self-weight is restricted in the MEXE equations adopted by 
Network Rail Guidance Note (Network Rail 2006). Therefore, the curves for the safe axle loads 
from Network Rail version of MEXE are terminated suddenly for relatively larger span bridges. 
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3.2  Effective span 
There is some uncertainty regarding the effective span to which Pippard applied his equations 
and their subsequent incorporation into the MEXE method. The method uses the clear span and 
rise, that is, the geometry of the intrados (Heyman 1982), whilst it might be more logical to use 
the neutral axis of the barrel. This would result in a larger span than the clear span between the 
face of the abutments (or piers). For large spans this will represent a small percentage error. 
However, in the case of small spans this will not be the case and much larger errors will be 
incurred. This is the subject of current research and will be reported in a future paper. 

3.3  Tensile stress limit 
It should be pointed out that the safe axle loads presented in Table 3 are based on limiting the 
compressive stress at the crown extrados less than fc = 1400 kN/m2. For some combination of 
ring thickness and crown cover, this compressive stress limit can be less restrictive compared 
with the tensile stress limit, i.e. ft = -700 kN/m2 and the carrying capacity could be controlled by 
the tensile stress at the crown intrados, as demonstrated in Fig.5. 
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Figure 5 : Safe axle loads using Pippard’s original equations (d+h=515 mm) 

4  CONCLUSIONS 

(1) Pippard neglected the effects of axial thrust in working out the strain energy. The error 
introduced is very small for most cases. However, it has been shown that for relatively small 
span thick arches (especially those with large span to rise ratios), the error becomes significant; 

(2) New equations for determining the load carrying capacity of an arch that incorporate the 
effects of axial strain energy are presented, with which lower carrying capacities have been 
predicted for relatively small span bridges; 

(3) Pippard’s original work was based on limiting the compressive stress at the crown 
extrados under combined dead and live load. It has been shown that the stress criterion can be 
exceeded under the dead load only case for larger spans; 

(4) Tensile stress limit could be in control in some circumstance, therefore, the axle load 
obtained from Eq.(15) should be checked against tensile stress limit before the final safe axle 
load is determined; 

(5) Whilst the highway version of MEXE method would give the same value for the safe axle 
load for a given (h+d), the original equations give very different safe axle loads depending upon 
the relative values of h and d. 
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