
 
 

1 INTRODUCTION 

A great number of r.c. arch bridges were erected in Italy in the first half of the 20th century, as 
the concrete arch was the most common solution adopted for bridges spanning over 40.0 m or 
more. Of course, many of these bridges, which were designed according to what today are con-
sidered outdated code regulations, are still in service, and their assessment is of increasing con-
cern. In addition, current bridge inspection techniques, based on visual inspection conducted by 
experienced engineers, may be sometimes not suitable, or easy to apply, to arch bridges, espe-
cially when the bridge spans over a deep valley or a river. 

The possibility of identifying (assessing) damage in existing structures through dynamic 
measurements is well known for a long time: see, e.g., the review of papers on this topic sur-
veyed in (Doebling et al., 1998). Recently, Cerri and Vestroni (2003) developed identification 
techniques to detect one or multiple cracks in vibrating beams through frequency measure-
ments. A similar approach was employed by Lepidi et al. (2005) for damaged suspended cables, 
as well as by Cerri and Ruta (2004) for circular arches. 

In this paper a different possibility of detecting localized damage in arch bridges is investi-
gated, based on the analysis of the eigenvalue curve. Indeed, when plotted versus any mechani-
cal characteristics of the arch, two adjacent frequency loci may either intersect or repel each 
other: these two behaviours are known as “eigenvalue curve crossing” or “veering”, respec-
tively. 

The occurrence of eigenvalue curve veering and mode localization, as a consequence of the 
presence of a weak link between structural elements of comparable stiffness, was pointed out, 
e.g., by Liu (2002); he suggested that suitable derivatives of the eigenvalues and eigenvectors of 
the dynamic system can be used as indicators of this phenomenon. A more general discussion 
on the veering of the frequency loci as a consequence of perturbations in the dynamic system 
can be found in (Chen and Kareem, 2003). These perturbations can be either of geometrical na-
ture (e.g, lack of symmetry or springer misalignment in arch bridges), or originate from in-
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homogeneities in the mechanical properties, as in the case of damage localized at any position 
in a symmetric arch. 

The aim of the present work is twofold. First, the occurrence of eigenvalue curve veering on 
existing r.c. arch bridges will be pointed out (Sec. 2). Then, the possibility of detecting any lo-
calized structural damage in arch bridges will be theoretically investigated through the study of 
the free vibration of circular arches embedding a weaker link (Sec. 3), for which either crossing 
or veering in the eigenvalue curve occurs according to the position of the damaged zone. 

2 THE PHENOMENON OF VEERING IN EXISTING R.C. BRIDGES 

The crossing and veering phenomena should be frequently encountered in the dynamics of arch 
structures, as in the literature these characteristics are often related to curved structures for 
which some classes of eigenvalues and eigenvectors show a strong dependence on a geometric 
or mechanical parameter. For example, according to the 2D F.E. modelling of the r.c. arch 
bridge shown in Fig. 1, about 90 m long and currently investigated by the authors, the following 
comments can be made: 
a) if a perfectly symmetric model is adopted, the eigenvalue loci of the first two flexural modes 

(1st symmetric and 1st anti-symmetric) exhibit a crossing behaviour versus the (normalized) 
Young’s modulus, E, of the structure (that is, versus the stiffness-to-mass ratio), as shown in 
Fig. 2a. In this figure, E0 is a reference value for the elastic modulus; 

b) if a slight non-symmetry is introduced in the model (2% longitudinal slope), the eigenvalue 
loci of the same modes (again plotted versus the Young’s modulus), after approaching, veer 
instead of crossing each other (Fig. 2b). Unlike the case of crossing, an important character-
istic of the veering of the eigenvalue loci is that the mode shapes associated with each locus 
are combined during the veering in a continuous way. This originates so-called hybrid 
modes, strongly evident in the approaching zones (Fig. 2b); 

c) if the non-symmetry is introduced by a change in the Young’s modulus in a small portion of 
the structure, as shown in Fig. 3a, again the veering phenomenon arises (Fig. 3b). 
Furthermore, keeping in mind that only a small number of full-scale dynamic tests have been 

carried out on modern r.c. arch bridges (Cantieni et al. 1994, Benedettini et al. 2005, Gentile 
2006), it has to be mentioned that Benedettini et al. (2005) reported that two arch bridges in the 
Teramo Province (central Italy) exhibited an anomalous dynamical behaviour, that can be traced 
back to the veering of two neighbouring vibration modes. In the case of Valle Castellana 
bridge, the sequence of the modes hybridization is related to the first two flexural vibration 
modes, whereas in the case of Frattoli bridge the hybridization sequence pertains to the 1st anti-
symmetric flexural mode and the 1st torsion mode. 
 

 

Figure 1 : View of the tied-arch bridge in Canonica d’Adda, Italy (1955). 
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Figure 2 : (a) Crossing on a symmetric and (b) Veering on a non-symmetric arch bridge model. 
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Figure 3 : (a) Damaged arch bridge model; (b) Veering on the damaged arch bridge model. 
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3 THE PHENOMENON OF VEERING IN DAMAGED ARCHES 
3.1 Problem position 
Consider a double-hinged circular arch with a symmetry axis y; the cross-section of the arch is 
constant and symmetric respect to the (x,y) plane. Let R denote the arch radius, 2ϕ0 the angle of 
opening of the arch, J the cross-sectional moment of inertia, µ the weight per unit arch length. 
The arch is homogeneous, except for an arbitrarily small neighbourhood of any section where 
damage is supposed to be localised: let E be the Young’s modulus of the homogeneous (undam-
aged) material. According, e.g., to Cerri and Ruta (2004), the damaged section can be modelled 
as a spring of stiffness k lower than the remaining arch (see Fig. 4): the angle ϕcr gives the posi-
tion of the damaged section, measured clockwise from the symmetry axis y. 
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Figure 4 : Symmetric circular arch embedding a damaged section. 

 
It is expedient to use two angle coordinates, ϕ1 and ϕ2, running clockwise along each of the 

two parts of the arch and vanishing in either one of the hinges (Fig. 4). Let u and v denote the 
axial and transversal displacements of the centre line of the arch, respectively: assuming the 
arch to be thin, shear strains can be neglected and the rotation θ of any cross section is θ = 
(u+dv/dϕ)/R. Also, provided that the arch is not shallow, it is reasonable to assume that the cen-
tre line of the arch is incompressible, so that v = du/dϕ. According, e.g., to Henrych (1981), ne-
glecting the effect of shear, rotary inertia, and tangential inertia forces, the equation of the free 
vibration of an incompressible arch is 
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where χ2 = µR4ω2/(EJ), ω being the circular frequency; only positive values of χ will be taken 
into account. Setting η = √(χ+1), κ = √(χ−1), and disregarding the particular case where χ=1, 
the general solution of Eq. (1) reads 

ui(ϕi) = Aisin(ηϕi) + Ai+1cos(ηϕi) + Ai+2sinh(κϕi) + Ai+3cosh(κϕi) + Ai+4ϕi + Ai+5, (2) 
with i = 1 for 0 ≤ ϕ1 ≤ ϕ0+ϕcr and i = 2 for −ϕ0+ϕcr ≤ ϕ2 ≤ 0. The set of boundary conditions for 
the arch is equivalent to a homogeneous system of algebraic equations of the form 
[S(χ,ϕcr)]{A}={0}, with {A} = {A1, A2 … A12}T. Non-trivial solutions are obtained if [S] is sin-
gular, i.e., if  

det[S] ≡ kg1(χ) + g2(χ,ϕcr) = 0,  (3) 
with 
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Note that the eigenfrequencies of the perfect (undamaged) arch correspond to the roots of 
g1(χ) = 0: these frequencies may be compared with those measured on any real arch to detect 
the presence of damage. The first eigenfrequencies of perfect circular arches of different geome-
try are listed in tabular form in Henrych (1981). Also note that χ = 0 or 1 are roots of Eq. (3) ir-
respective of ϕcr: the first root is clearly immaterial; the other one is not acceptable, as Eq. (1) 
degenerates if χ = 1 and Eq. (2) is no longer its solution. 

In the following section the numerical solution of Eq. (3) is sought. In particular, the influ-
ence of the position of the damaged section on the free vibration of the arch is analyzed. 

3.2 Influence of the position of the damaged section ϕcr on the free vibration 
Consider first the case of a symmetrically damaged arch (ϕcr = 0). In this case Eq. (4b) can be 
rewritten as 
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This shows that a set of eigenfrequencies corresponds to sin(ηϕ0) = 0, that is 
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The corresponding eigenmodes are anti-symmetric: these modes are insensitive to the presence 
of the damaged section as the curvature of the vibrating centreline vanishes at the crown of the 
arch. The remaining roots of Eq. (3) correspond to symmetric eigenmodes. 
 

      
 

Figure 5 : Normalized eigenfrequencies vs flexibility of the damaged section for a symmetrically dam-
aged arch. (a) ϕ0 = π/3; (b) ϕ0 = π/2. 

 
In Fig. 5 the normalized eigenfrequencies (χ) are plotted versus the flexibility of the damaged 

section (1/k) for a circular arch damaged at the crown, with an opening angle 2ϕ0 of (a) 2π/3 or 
(b) π. The corresponding qualitative eigenmodes are also shown. The plots show that crossing 
of the pairs of eigenvalue loci corresponding to the same wavenumber occurs. The case of an 
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undamaged arch is recovered in the limit case 1/k → 0, whereas 1/k → ∞ represents an arch 
which has completely lost its bending stiffness at the crown. 

Assume now that the damaged section has an arbitrary location (ϕcr ≠ 0). All the roots of Eq. 
(3) have now to be sought numerically. Fig. 6 shows the plots of the normalized eigenfrequen-
cies of an arch with opening angle 2ϕ0 = 2π/3 considering different locations for the damaged 
section (ϕcr = π/72, π/24 or π/8). The occurrence of eigenvalue curve veering is particularly evi-
dent if the damaged section is close to the arch crown, whereas the phenomenon is less clear as 
the damaged section approaches the haunches. As shown by the eigenmodes sketched in Fig. 
6a, as the flexibility of the damaged section increases there is an exchange in the order of the 
eigenfrequencies that correspond to nearly symmetric and nearly antisymmetric modes of vibra-
tion. 
 

 

      
 

Figure 6 : Normalized eigenfrequencies vs flexibility of the damaged section for an unsymmetrically 
damaged arch with ϕ0 = π/3. (a) ϕcr = π/72; (b) ϕcr = π/24; (c) ϕcr = π/8. 
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4 CONCLUSIONS AND FUTURE PERSPECTIVES 

According to the numerical examples shown in Sec. 2 and the analytical results derived in Sec. 
3, the occurrence of the phenomenon of veering in the eigenvalue curves associated to adjacent 
eigenfrequencies has been pointed out for arch bridges with geometrical or material imperfec-
tions. This phenomenon could be expediently exploited in identification procedures, to detect 
the occurrence and the intensity of any damaging process localized in an arch. In a geometri-
cally symmetric arch, the detection of hybrid modes, the existence of close or multiple eigen-
values, or an inversion in the order of the expected modal shapes, are all symptoms of the pres-
ence of damage. Localized damage, however, might be hard to detect below a certain critical 
level according to the first modal shape only; indeed, according to Figs. 5 and 6, the first modal 
shape for a slightly damaged arch is (exactly or nearly) anti-symmetric, as in the perfect case, 
and the first eigenfrequency is not much different from that of the undamaged arch.  

The above remarks are meant to be essentially qualitative regarding the possibility of detect-
ing the presence of damage. The quantification of the damaging process, and the identification 
of the location of the damaged section(s) of the arch, require an identification procedure such as 
that proposed by Cerri and Ruta (2004), which makes use of an objective function defined as 
the norm of the difference of the predicted and the experimentally measured eigenfrequencies. 
The damage parameters are identified through a minimization procedure.  

In the continuation of the research, the introduction is planned of the identification procedure 
outlined above in a FE program for 2D and 3D analyses. Also, the case of multiple damaged 
sections will be dealt with, and the case where damage is not localized, but rather spread over a 
finite portion of the arch, will be investigated. 
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