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Abstract. This paper presents the experimental modal analysis, analytical modal analysis 
and finite element model updating of a half-through concrete-filled steel tubular (CFST) arch 
bridge. Field dynamic test was carried out just prior to the official opening of bridge under 
ambient vibration excitations. Two independent but complementary output-only modal 
identification techniques were used for modal identification. They were the peak-picking (PP) 
method in the frequency domain and the stochastic subspace identification (SSI) method in 
the time domain. The 3-D finite element model was developed and performed analytical 
modal analysis to achieve natural frequencies and mode shapes. A practical and handy finite 
element model updating method is then presented using the field ambient vibration test results. 
The objective function considers the residuals of frequencies, Modal Assurance Criterion 
(MAC), as well as flexibility. An eigenvalue sensitivity study is carried out to see the sensitive 
parameters to concerned modes. The objective function is minimized using the least square 
algorithm. The updated finite element model is able to produce natural frequencies in close 
agreement with the experiment results with enough improvement on MAC value of concerned 
modes still preserving the physical meaning of parameters. The updated finite element model 
can serve as the baseline for the long-term health monitoring and damage detection of the 
bridge.  
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1 INTRODUCTION 
The arches are mainly subjected to compression. The concrete-filled steel tubular (CFST) 

arches, taking advantages of both steel and concrete, make the arch spans longer. The first 
CFST arch bridge in China was completed in 1990. After that, more than two hundred bridges 
have been built or under construction in China. The span length has reached to 460m or even 
longer. The nonlinear static behavior of CFST arch bridges was intensively studied by 
experiments and finite element analysisi. However, the dynamic characteristics of this type 
bridges have been studied rarely in the literatures.  

The dynamic properties of bridges can be obtained by either experimental modal analysis 
or analytical modal analysis. The modal parameters such as natural frequencies, damping 
ratios and mode shapes can be identified through the field vibration measurements. Finite 
element (FE) method is now a common way to the analytical modal analysis where the 
dynamic characteristics of bridges can be calculated.     

In modern analysis of bridge dynamics, much effort is devoted to the derivation of accurate 
models. These accurate models are used in many applications like damage detection, health 
monitoring, structural control, load-carrying capacity evaluation. The FE model of a bridge is 
usually constructed on the basis of highly idealized engineering blue prints and designs. When 
field tests are performed to validate the analytical model, inevitably their results, commonly 
natural frequencies and mode shapes, do not coincide with the expected results from the 
theoretical model. The purpose of FE model updating is to modify the mass, stiffness and 
damping parameters of the numerical model in order to obtain better agreement between 
numerical results and test data.       

A number of dynamics based model updating methods have been proposedii ,iii,iv The 
sensitivity-based parameter updating approach has an advantage of identifying parameters 
that can directly affect the dynamic characteristics of the structure. The objective function is 
often built up by the residual between the measurement results and the numerical prediction. 
There are commonly three expressions mostly used for this purpose, which are frequency 
residual, mode shape considered function and flexibility residual. Most of sensitivity-based 
approaches only consider the eigenvalue residual. 

The objective of this paper is to present the experimental and analytical dynamic analysis 
on a newly constructed concrete-filled steel tubular arch bridge in Xining, China. Just before 
the bridge opening to traffic, the field ambient vibration test was performed and bridge 
dynamic characteristics were identified. Three-dimensional finite element model of the bridge 
was developed based on the original blue prints. An eigenvalue sensitivity study is then 
carried out to see the effect of various parameters to concerned modes, according to which the 
most sensitive parameters are selected for updating. The objective function, consisting of 
eigenvalue residual, MAC consideration function and flexibility residual, is minimized using 
the least square algorithm. The updated finite element model is able to produce natural 
frequencies in close agreement with the experiment results still preserving the physical 
meaning of parameters. It is demonstrated that finite element and experimental modal analysis 
provide a comprehensive investigation on the dynamic properties of the bridge. The analytical 
modal analysis through three-dimensional finite element modeling gives a detailed description 
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of the physical and modal characteristics of the bridge, while the experimental modal analysis 
through the field dynamic tests provides a valuable source of information to validate the 
drawing-based idealized finite element model. 

2 BRIDGE DESCRIPTION 
The Beichuan River Bridge with a span of 90m, as shown in Figure 1, is a half-through 

concrete-filled steel tube tied arch bridge over the Beichuan River located at the center of 
Xining City, Qinghai Province, China. The superstructure of the bridge consists of the vertical 
load bearing system, the lateral bracing configuration, and the floor system. The cross-section 
of two main arch ribs is a truss of four concrete-filled tubes, with the dimension of 
650×10mm. The rib height is 3000mm. There are 32 main suspenders of steel wire ropes that 
are vertically attached on main arch rib and floor system is suspended through it. Each of 
these 32 main ropes consists of 127 smaller bars each with a diameter of 5.5 mm. The floor 
system consists of a 250 mm thick concrete slab supported directly by cross girders at a 
spacing of 5m. The typical rectangular cross section of the cross girder is 0.36×1.361 m. The 
length of each cross girder is 21.6 m between the suspenders. The main arch ribs are fixed at 
two abutments, and connected by 4 pre-stressed strands each side in the longitudinal direction 
which acts as tied bars. Each stands were prestressed by 2200kN force. The concrete deck is 
supported by the expansion bearings at the two ends.  
 

 
 

Figure 1: The Beichuan River CFST arch bridge 

3 FIELD AMBIENT VIBRATION TESTS 
The dynamic testing of a structure provides a direct way to obtain the bridge dynamic 

characteristics. Compared with traditional forced vibration testing, the ambient vibration 
testing using natural or environmental vibrations induced by traffic, winds and pedestrians is 
more challenge to the dynamic testing of bridges. Ambient vibration tests have an advantage 
of being inexpensive since no equipment is needed to excite the bridge. It corresponds to the 
real operating condition. The service state need not to be interrupted to use this technique.    
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Just prior to officially opening the bridge, the field ambient vibration tests on the Beichuan 
River arch bridge were carried out.  The equipment used for the tests included accelerometers, 
signal cables, and a 32-channel data acquisition system with signal amplifier and conditioner. 
Accelerometers convert the ambient vibration responses into electrical signals. Cables are 
used to transmit these signals from sensors to the signal conditioner. Signal conditioner unit is 
used to improve the quality of the signals by removing undesired frequency contents (filtering) 
and amplifying the signals. The amplified and filtered analog signals are converted to digital 
data using an analog to digital (A/D) converter. The signals converted to digital form are 
stored on the hard disk of the data acquisition computer.     

Measurement points were chosen to both sides of the bridge at a location near the joint of 
suspenders and deck. As a result, a total of 32 locations (16 points per side) were selected and 
measured. The measurement station arrangements are shown in Figure 2. Four test setups 
were conceived to cover the planned testing area of the bridge. One reference locations was 
selected near each side of abutment for each setup. The sampling frequency on site for 
vertical data and transverse data 80Hz and 200 Hz respectively with a recording time of 15-20 
minutes. The force-balance accelerometers were directly mounted on the surface of the bridge 
deck. 
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Figure 2: Measurement stations                      Figure 3: Accelerometers mounted on bridge deck 

Ambient vibration measurements do not lend to frequency response function or impulse 
response function calculations because the input excitations are not measured. The modal 
parameter identification is therefore based on the output-only data. Two complementary 
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modal parameter identification techniques are implemented here. They are rather simple peak 
picking (PP) method in frequency-domain and more advanced stochastic subspace 
identification (SSI) method in time-domain. The data processing and modal parameter 
identification were carried out by MACECv. The theoretical background of both identification 
techniques can be referred to Peetersvi as well as Van Overschee and De Moorvii. 

 
Mode  FE analysis   Stochastic subspace identification 

1st vertical 
 

 

2nd vertical 
 

  

3rd vertical 
 

 

4th vertical 
 

  

1st torsion 

  

1st transverse 

 

Figure 4: Identified and calculated mode shapes of the bridge 
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The identified frequencies and damping ratios from field ambient vibration measurements 
are summarized in Table1. It can be observed that the identified frequencies have a good 
agreement between the peak picking in frequency domain and the stochastic subspace 
identification in time domain. The typical identified mode shapes from the stochastic 
subspace identification are shown in Figure 3. 
 

Table 1 : Identified frequencies and damping ratios 

 
 
 
 
 
 
 
 
 
 

 

4 FINITE ELEMENT MODELING OF THE BRIDGE 
The three-dimensional linear elastic finite element model of the bridge was constructed. 

The arch member, cross girder, and bracing members were modeled by two-node beam 
elements. All suspenders were modeled by the truss elements. The surface floor was modeled 
as shell elements. As a result, 3120 nodes, 3446 elements and 14060 active degrees of 
freedoms were recognized on the model as shown in Figure 5. The calculated mode shapes 
are compared with those identified from ambient vibration measurements in Figure 4. 

 

 
 

Figure 5: Three-dimensional finite element model of the tested bridge 

Peak-picking Stochastic subspace identification 
Mode 

Frequency (Hz) Frequency（Hz） Damping Ratio（%） 
1st vertical 2.012 2.002 0.80 
2nd vertical 2.519 2.511 2.40 
3rd vertical 3.457 3.473 1.20 
4th vertical 4.628 4.624 1.30 
1st torsion 2.812 2.827 1.00 
2nd torsion 3.926 3.864 1.90 
3rd torsion 5.390 5.419 1.50 

1st transverse 2.776 2.780 1.20 
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5 FINITE ELEMENT MODEL UPDATING 

5.1 Theoretical background 
An objective function Π  reflects the deviation between the finite element results, for a 

constant mesh density and the real behaviour. The model updating may be posed as a 
minimization problem to find *x  design set such that  

( ) ( )* ,x xΠ ≤ Π         x∀  (1)

The general objective function formulated in terms of the discrepancy between finite 
element and experimental eigenvalues and mode shapes is shown below respectively. 
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where iα and iβ  are weight factor to impose a relative difference between eigenvalue and 
mode shape deviations respectively because these entities may have been measured with 
different accuracy. aiλ  and eiλ  are the finite element and experimental eigenvalue of the ith 
mode respectively. if  is the mode shape related residual. After trying several expressions, 
Moller and Friberg viii proposed the following expression 
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in which the Modal Accuracy Criterion (MAC) is defined by 
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It has been reported that the modal flexibility is more sensitive to damage than the mode 
shapes and natural frequencies and then offers a conceptual evaluation ix,x. The modal 
flexibility is the accumulation of the contribution from all available mode shapes and 
corresponding natural frequencies. The modal flexibility matrix nnF ×][  is defined as xi 

[ ] [ ] [ ]T mnmnnnF ××× Φ



Φ= 2

1
ω

 (6)

where ][Φ is the mode shape matrix and ω  is the circular frequency . Similarly, n and m are 
number of the measurement DOFs and number of mode shapes considered respectively. If the 
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deflection vector iu under uniformly distributed unit load, called the uniform load surface, is 
defined, the objective function 3Π considering the flexibility residual can be presented as 
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It is necessary to have a mass-normalized mode shapes to use measured flexibility matrix 
in FE updating which is the major drawback of the procedure. For a force vibration test the 
mass normalization can be implemented from the driving point inertance measurement. 
However, for a modal test that uses an ambient excitation source, the mass-normalized mode 
shapes are not straightforward. To realize that, the Guyan-reduced mass normalization 
technique xii is used in the paper. 
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The reduction is performed according to Guyan xiii, which assumes that the inertial forces 
at the eliminated degree of freedom are negligible. This assumption typically makes this 
method valid for only the lower frequency modes. The expression shown in equation (9a) is 
an especially convenient normalization for a general system and for a system having a 
diagonal mass matrix, it may be written as shown in equation (9b). 

Equations (2), (3) and (8) are the objective functions considering frequency residual only, 
mode shape related function only and modal flexibility residual only. Hence full objective 
function used in the paper is their combination with the constraints to be imposed on objective 
functions. 

)()()()( 321 xxxx Π+Π+Π=Π  (10)

ULeiai ≤−≤ λλ0  (11)

11 ≤≤ MACL  (12)

where UL is the upper limit whose value can be set as absolute error of jth eigenvalue and 
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1L represents the lower limit to constrain the MAC. 
Finite element model updating is carried out to solve a constrained minimization problem 

whose aim is the minimization of the objective function Π  under the constraints. Design 
variables are subjected to constraints with upper and lower limits that is 

1 2 3 Nx x x x x =  LL  (13a)

( 1,2,3,... )x x x i Nii i≤ ≤ =  (13b)

Then the form of optimization is: 

Minimize  ( )xΠ=Π  (13c)

Subjected to 

( ) ( )1,...3,2,1 migxg ii =≤  (13d)

( ) ( )2,....3,2,1 mixhh ii =≤  (13e)

( ) ( )3....3,2,1 miwxww iii =≤≤  (13f)

In current optimization algorithm, the penalty function concept is used. Penalty function 
methods generally use a truncated Taylor series expansion of the modal data in terms of 
unknown parameters. Three main steps of the of first order optimization method are described 
as follows: 

(a) The constrained problem statement expressed in equation (13) is transformed into an 
unconstrained one using penalty functions. An unconstrained form is formulated as follows: 

1 2 3
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where ),( qxQ  is the dimensionless unconstrained objective function, xP , gP , hP , wP are the 
penalties applied to the constrained design and state variables and 0Π  reference objective 
function value that is selected from the current group of design sets.  

(b) Derivatives are formed for the objective function and the state variable penalty 
functions leading to the search direction in design space. For each optimization iteration (j) a 
search direction vector jd  is devised. The next iteration (j+1) is obtained from the following 
equation (15) 

)()()1( j
j

jj dSxx +=+  (15)

In this equation, measured from )( jx , the line search parameter jS corresponds to the 

minimum value of Q in the direction )( jd .  
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(c) Various steepest descent and conjugate direction searches are performed during each 
iteration until convergence is reached. Convergence is assumed when comparing the current 
iterations design set (j) to the previous (j-1) set and the best (b) set as shown in equation (16) 

τ≤Π−Π − )1()( jj   and   τ≤Π−Π )()( bj  (16)

whereτ is the objective function. In this paper, with respect to each parameters, the eigenvalue 
sensitivity matrix is approximated using the forward difference of function with respect to 
each parameters considered as shown in equation(17) 
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where, e= vector with 1 in its jth component and 0 for all other component, ∆D = forward 
difference (in %) step size, taken 0.2 in this study. 

5.2 Updating of the tested bridge 
The crucial step is how many parameters to be selected and which parameters from many 

possible parameters to be considered in updating. If too many parameters are included in the 
updating, the problem may appear ill-conditioned because only few modes are correctly 
recognized in the ambient vibration testing. To achieve this objective, the sensitivity analysis 
is carried out using the maximum number of potential parameters  

It is better to start from all possible parameters then identify the most sensitive and non 
sensitive parameters to response. In this case study of arch bridge, boundary condition is well 
defined and there is not more uncertainty to boundary condition. Out of possible parameters, 
eigenvalue sensitivity analysis with respect to initial estimation of parameters is performed for 
15 influential parameters. The example of sensitivity analysis is shown in Figure 6. It is found 
that mass density of arch and deck, material property of deck ,thickness of deck and other 
selected parameters are most sensitive to most of the modes considered where as the 
parameters like moment of inertia of arch and area of prestress cable connecting two 
abutments are not so sensitive. 9 most sensitive parameters are selected for updating purpose. 

When selection of parameters and nature and number of mode shapes to be used in 
updating is confirmed, an objective function and state variables are defined in equation 
(10~12). The weighting matrix should be chosen in objective function to reflect the relative 
accuracy among the measured modes. Typically, the frequencies of the lower few modes are 
measured more accurately than those of the higher modes. If each natural frequency is 
weighted equally in absolute terms, the algorithm will effectively weight the higher frequency 
more. By assigning proper values for iα , the difference between analytical and the measured 
eigenvalues of the lower modes can be further minimized. In this work, the iα  values 
corresponding to first four modes are set to be 15 times larger than the remaining modes. 
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Although it is very hard to estimate the variation bound of the parameter during updating, it 
can be assumed according to some engineering judgments. The variation of ± 20% is given 
for thickness of deck and ± 30% for other parameters 

 

 
 

Figure 6:  Eigenvalue sensitivity to potential parameters 
 
An iterative procedure for model tuning was then carried out. The selected parameters 

were estimated during an iterative process. The tuning process is over when tolerances were 
achieved or predefined number of iterations was reached. Although the optimization process 
is automatic, many things are required to be considered for successful updating. 

The comparison of initial, updated and experimental results summarized in Table 2. It has 
been shown that the differences between FE frequency and experimental frequency ware 
reduced below 7%  after updating. The errors of the first four frequencies fall below 2%, 
which is a significant improvement comparing to the initial FE result. 

 
Table 2 : Comparison frequencies (Hz) 

 
 
 
 
 
 
 
 
 
The correlation of mode shape is also improved as all MAC values are over 80% except for 

first transverse mode which also has improvement on the MAC of 76.6 from initial value 

Nature of modes Initial FE Updated FE Test results 

1st vertical 
2nd vertical 
1st torsion 

1st transverse 
3rd vertical 
4th vertical 

1.743 
2.210 
2.391 
2.669 
2.778 
3.541 

1.962 
2.493 
2.815 
2.737 
3.256 
4.027 

2.002 
2.511 
2.827 
2.780 
3.473 
3.864 
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62.1%. Careful inspection of MAC matrix of Figure 7 shows that there is improvement on the 
MAC value of every mode considered 

 

 
 

Figure 7:   MAC matrix after updating 
 
The change in values of selected parameters with initial and updated values is shown in 

Table 3. It is demonstrated that the design values are quite different than that of the updated 
values. The changes in these parameters represented the global change of stiffness and mass 
matrix 

 
Table 3 : Parameters before and after updating 

 
 
 
 
 
 
 
 
 
 
 

6 CONCLUSIONS 
The paper presented a sensitivity based finite element model updating method for real 

bridge structures using the test results obtained by ambient vibration technique. Full objective 

Parameters updated Initial values Updated values Change 

Elastic modulus of arch (Pa) 
Elastic modulus of cross girders (Pa) 
Elastic modulus of deck (Pa) 
Inertia moment of cross girder (m4) 
Thickness of bridge deck (m) 
Mass density of arch (kg/m3) 
Mass density of deck (kg/m3) 
Sectional area of arch (m2) 
Sectional area of suspender (m2) 

4.56×1010 

3.45×1010 

3.00×1010 

0.0756 
0.25 

2871.0 
2500.0 
0.4311 
0.0025 

5.30×1010 
4.26×1010 
3.90×1010 

0.0972 
0.246 
2010.0 
2144.0 
0.3384 
0.0021 

16.3 
23.5 
30.0 
-1.76 
3.473 
-30.0 
-14.2 
-21.5 
-16.0 
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function that considers frequency, mode shape related and modal flexibility residuals. It is 
demonstrated that the dynamic characteristics of  a full scale concrete-filled steel tubular arch 
bridge can be fully studied by the field ambient vibration tests, the free vibration analysis 
through three-dimensional finite element method, as well as the finite element model updating 
by using field ambient vibration measurement results. 
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