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ABSTRACT: The calculation of the bearing capacity of the Bridgemill masonry arch bridge is
presented using the mixed discrete element method. This bridge has been the subject of several
studies aiming at the calibration and validation of structural analysis numerical models. Hendry,
Davies and Royles subjected the bridge to an in situ test, where a knife type load was applied at
a quarter span until collapse. A 2D model of rigid discrete elements including blocks and parti-
cles describes accurately its limit behaviour. Four different cases are considered to analyze the
bridge behaviour and estimate its load capacity, two with the isolated arch, and two combining
the arch with the fill and the spandrel wall. The 3D collapse load is estimated by combination of
those solutions. Due to the unavailability of several Bridgemill bridge material properties, the
equivalent values measured on experimental tests for similar structures had to be selected.

1 INTRODUCTION

The main objective of this communication is to illustrate the application of a mixed discrete ele-
ment method program. This program is specially adapted to the structural analysis of masonry
structures made up of two types of rigid discrete elements: (i) polygonal, also referred to as
blocks (b), with three to five vertices and (ii) circular, referred to as particles (p).

The structural system deformability results solely from the adopted point contact model,
where the compression forces associated to contact between discrete elements produce a small
superposition of their boundaries. The constitutive model associated to each contact can be for-
mulated either in terms of stresses or forces. While in the stress formulation the influence area
for each contact must be permanently updated during a pseudo-temporal analysis (but never be-
coming smaller than a predetermined minimum value in order to avoid severe numerical oscilla-
tions of the contact force), in the force formulation such an influence area is kept fixed. For ma-
terials with a small compressive strength some crushing phenomena may occur, requiring the
use of an elastoplastic stress-strain relation, and it becomes advisable to adopt the stress formu-
lation. However for masonry arches the voussoirs’ compression strength is usually large, with a
collapse mechanism exhibiting the four “plastic hinges” pattern, and thus the more efficient
force formulation is ideal for the calculation of the structure’s ultimate load.

2 BRIEF DESCRIPTION OF THE MIXED DISCRETE ELEMENT METHOD (MDEM)

This section presents a succinct description of the version of the discrete element method
(DEM) used in the calculations. For a more detailed portrayal see Rouxinol et al. (2006). The
mixed discrete element method follows in a general form both the DEM for blocks, Cundall
(1971), and the DEM for particles, Cundall and Strack (1979). The junction of these two models
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required the definition of new types of contacts and the development of sub-algorithms for de-
tection of new contacts and updating / removal of old contacts. The sub-algorithm implemented
for detection and updating follows the method proposed by Cundall (1988) and the enveloping
volumes method, Williams (1988). In general terms the DEM consists in the iterative and alter-
nate application of (i) the movement equations resulting from Newton’s second law, determin-
ing the displacement of the centre of mass of each discrete element, and (ii) of a constitutive
force-displacement relation at the contact level, including both normal and shear components. A
quasi-static analysis requires the use of numerical damping for dissipating the system’s kinetic
energy, which allows to classify this method as a dynamical relaxation method. Eventually, for
a finite number of iterations depending upon a selected maximum admissible error, the iteration
cycle converges into either an equilibrium resting state or a collapse mode.

The numerical damping can be either (i) global when proportional to the velocity (viscous) or
(i) local when proportional to the out-of-balance forces. For stability of the explicit integration
of the damped movement equations, the “time” step must be smaller than a critical value given
by twice the inverse of the maximum frequency of the linearized structural system,
Bathe (1982). Thus the program includes routines to solve the associated eigenvalue problem.
In order to reduce the computation time required for the eigenvalue analysis of systems with
large number of DOF simple approximate 1DOF methods can be used, which roughly depend
on the minimum particle mass and the maximum contact stiffness, Morikawa et al. (1993).

The relative velocity at a generic contact point gives the relative displacement increment as a
function of the time step. Then the contact’s influence area and constitutive relation give the
contact force increment, and the total contact force is updated. The normal component of this
force is calculated with an elastoplastic or a linear elastic model. When this component changes
from compression to traction the contact is eliminated. The shear component of the force obeys
the Mohr-Coulomb strength criterion. The updated contact forces of the contacts of each ele-
ment are statically reduced to its centre of mass together with other externally applied loads in-
cluding those due to gravity. A new computation cycle begins, until convergence is achieved,
solving the movement equations for new values for the relative velocity at the contacts, etc.

Due to the large amount of both blocks and particles that these structural systems may con-
tain, the program includes routines which automatically, based on some geometric parameters,
generate the discrete element mesh of the main structural components of a masonry bridge, like
semi-circular and shallow/deep segmental arches, spandrel walls, columns and (using the ex-
pansion ratio method) the fill material. The program is capable of bidirectional communication
in an AutoCAD® (DXF™) formatted context which means that (i) the referred meshes can be
exported and viewed within that standard CAD software and (ii) it can import predefined
meshes, obtained by photogrammetry, Valenga (2006), or other techniques.

The approximated isotropic stress for each block, as given by the divergence theorem, Po-
tyondy et al. (2004), is computed during the iteration process. For the visualisation of both
stress and displacement fields the post processing includes graphic routines, which are crucial to
assimilate the large amounts of output.

3 DETAILED ANALYSIS OF BRIDGEMILL MASONRY ARCH BRIDGE

In Rouxinol et al. (2006) the full description of the MDEM used in the present calculations is il-
lustrated with a brief study of Bridgemill’s masonry arch bridge collapse behaviour. Hendry,
Davies and Royles, as cited by Page (1993), performed an in situ test with a “knife” type load
with length Zo =0.750 m, see Fig. 1, crossing the whole 8.3 m bridge width, applied at a quar-
ter span of the arch, incremented until a maximum of 3100 kN. (This does not correspond to the
effective collapse, but merely to the extensive fissuring at the collapse mechanism hinges.) The
detailed DEM numerical analysis of this problem is presented next. The incremental knife load
is applied to four distinct structural/loading schemes: (i) isolated masonry arch without both the
fill material and the corresponding death weight; (ii) isolated masonry arch without fill material
but with the corresponding death weight; (iii) masonry arch plus fill material; (iv) masonry arch
plus spandrel wall. The arch mesh has 62 blocks, one for each voussoir, besides the fully fixed
abutments. The ultimate (effective collapse) load is given for a nondimensional unitary width
and, in parenthesis, for the real width of the bridge to compare with Hendry’s results.
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3.1 Geometric and mechanical properties

Page (1993) provides the geometric data and the materials’ mechanical properties of the bridge.
However that report lacks some crucial parameters. This entailed the selection of some values
referred to in the specialized literature for similar structures along with the analysis of the influ-
ence on the results as these speculative values were varied within expectable ranges.

The /=18.30m span and »=2.85m rise at midspan bridge’s parabolic arch is made up of
voussoirs with an height of 4, =0.711 m . The real parabola was replaced by a segmented arch
was, as the difference between these curves is small due to the magnitude of the ratio //r, Ver-
meltfoort (2001). The distance from the keystone extrados to the pavement surface is 0.478 m
(depth of fill at crown 0.203 m, sub-base thickness 0.125 m and bituminous layer 0.150 m).

For the sandstone voussoirs and spandrel wall’s bricks the deformation modulus (modulus of
elasticity) is E» =15GPa, the density is p» =2100kg/m’ and each block’s compressive
strength is f,1 =43.8 MPa .

For the fill material particles, composed of a mixture of gravel, sand and clay, the adopted
deformation modulus is £, =40 GPa, Molins (1998), and the density is p; =1890 kg/m”.

A first estimate of the normal and shear contact elastic stiffnesses per unit area satisfy

—=—t, = 1)

Vieira (1997), where l. is the distance between the centres of mass of the two contacting
blocks (measured along the contact’s normal), k; and k{ are the effective joint normal and
shear stiffnesses per unit area and G, is the blocks’ elastic shear modulus. Table 1 gives these
parameters’ values for the three contacts’ types. The values adopted for k's-5, k' s, and the
Poisson’s ratio v were experimentally determined by Costa (2002) for Lagoncinha’s bridge.

Table 1 : Calculation of the contact stiffnesses &, and k; .

dcm 14 E G kn' ks' kn kx

m — GPa GPa GPa/m GPa/m GPa/m GPa/m
b-b 0.3208 0.2 15.000  6.250 5.400 0.590 4.840 0.573
b-p 0.1500 0.2 15.000  6.250 65.000 27.000  4.840 0.573
p-p 0.1500 0.2 0.040 0.017 — — 0.532 0.222

The values used for the p-p contact stiffnesses, k. and k, must be such that the overall fill’s ri-
gidity is similar to E, . In order to calculate them the arbitrary values k' ,-, =k's-, were first
assumed and the values of k., and ks specified by (1) calculated and referred to as
knay =0.266 GPa/m and ks =0.111GPa/m . Then an 1 mside square’s sample was isolated
from the fill’s mesh, Fig. 1a, replacing, when possible, the partially truncated particles by
smaller ones. Subsequently this sample was confined with three fixed blocks, placed below and
on its sides, Figure 1b. A fourth block weighing 2.6 kN and free to move vertically was then
subjected to load increments of 25 kN, Fig. 1c, and its vertical displacement measured, Fig. 2.
This procedure was performed for values of &, and £ given by one, two, four, six and eight
times ki) and k), while all the other parameters were kept fixed. The average tangent de-
formation modulus is respectively 22, 28, 34, 42 and 48 MPa and the secant deformation
modulus (difference between first and last results) 16, 26, 12, 14 and 18 MPa. The three last
values are significantly higher if the first four load steps are ignored, 28, 43 and 54 MPa. In
order to satisfy the value specified for E; the stiffnesses adopted for the p-p contacts should
have been about &, =6k, and ks = 6ksa) but, by an oversight, in the results presented below
the values &, =2k, 1) =0.532 GPa/m and &, = 2k,,1) =0.222 GPa/m were used, see Table 1.
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Figure 1 : (a) Particle’s mesh sample; (b) confinement of the sample; (c) loading of the confined sample.
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Figure 2 : Stress-strain relation for the confined particles.

For the b-p contacts formulae (1) gave k, =0.079 GPa/m and ks =0.033 GPa/m, but these
values had to be increased (k_»-» =k _»-») in order to avoid excessive superposition.

Table 2 gives the remaining required parameters. Following Heyman (1982) and Lemos
(2006) the sandstone tensile strength f5, is ignored. The fill material’s tensile strength f7, is
also ignored. Due to the lacking record of the internal friction angle ¢, the value found in lab
tests for the Serra do Pilar’s Monastery, Portugal, Muralha (2000), was used for all types of
contact.

Table 2 : Further properties for the blocks and joints.

c ¢ Joas fra Sou Le, fived Le min

kPa ° MPa MPa m m
b-b 0 35.6 0 43.8 0.3455 0.0711
b-p 10 35.6 0 — 0.1500 —
p-p 10 35.6 0 — 0.1500 —

For an analysis per unit width, the contact’s influence area is given by a. =l x1=1[., where I
is the contact’s influence length. If /. is allowed to vary for the b-b contacts, a minimum must
be defined and the value /.min =%5/10 was considered following Coulomb, Heyman (1995). If
I is fixed then for the b-b contacts it is given by half the distance between the contact points
along the height of the blocks, L. jixa =(hs —d-)/2=0.3455m where d, is the rounding pa-
rameter of the blocks’ vertices, see Rouxinol et al. (2006) and, for the b-p and p-p contacts, by
the average of the diameters of the particles and/or radius of rounded vertices.

For the p-p and b-p contacts a cohesion of ¢, =10 kPa was adopted (c» =0), as justified by
the range [1 .0,20.0]kPa specified by Cavicchi ef al. (2005) and Gago et al. (2003).

In the following analyses the dead weight of the discrete elements of each model are “ap-
plied” first and the other loads afterwards. The arch’s abutments upper face measures 2.0 m.
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3.2 Case I — Isolated arch with neither the fill nor its action on the arch

In this case the arch carries only its dead weight and the “knife” load F . A load dispersion an-
gle of 26°, corresponding to a vertical to horizontal slope of s=2:1, was adopted. The load
degradation surface intersects the arch’s extrados at the points P and P, with depths /4, and
h2. These points define a line segment with horizontal projection L = Lo +(h1 + hz)/ s. The
load distribution between these points is approximately trapezoidal with magnitude inversely
proportional to the depth, i.e. g1 =¢-F/hi and g2 =¢q-F/h2. Thus, by equilibrium

2 hih: 2F  h» 2F
= , =2q1=— s q2=—"
L hi+h: L hi+h:

=

@

First the performance of the two types of damping was evaluated: the global viscous and the lo-
cal non-viscous. In the viscous case, the possibility of adapting the damping intensity during the
iteration cycle, global adaptive damping, was also assessed. The response load-displacement
curves (for the quarter span voussoir) are coincident, see Fig. 3a, and the collapse load is
204.82 kN /m (1700 kN). The total number of iterations for the local and the adaptive global
damping cases is similar (about 120 000) and ten times smaller than for the non-adaptive global
damping. Subsequently, and using the adaptive global damping, the sensibility of the response
to the contact’s influence length being kept fixed or left free was assessed, and it was verified
that both the collapse load and mechanism were preserved, Fig. 4a. In fact it was observed a
significant variation of the maximum stress value, from 1.49 to 6.06 MPa, depending on /. be-
ing fixed or free, even though both values are below f, .

3.3 Case 2 — Isolated arch with vertical loads simulating the fill action on the arch

In this case the fill is once more excluded from the DEM model, but its weight is considered,
together with the arch’s weight and, like in Case 1, the incremental knife load. Fig. 3b repre-
sents the load-displacement relation obtained, with a collapse load of 325.30 kN / m (2700 kN).
The differences observed in Fig. 3b between the final displacement values, for the different
types of damping, correspond to different collapse stages. The number of iterations required for
the local and adaptive global damping cases was about 230 000 and for the non-adaptive global
2 350 000. The maximum compression stress is again beneath f, for fixed (2.74 MPa) or non-
fixed (10.57 MPa) contact influence length. Fig. 4b shows the collapse mechanism.

3.4 Case 3 — Combined effect of the arch and the fill simulated by particles

In this case the point load is applied to the combined system formed by arch and fill material.
The radius expansion method, ITASCA (2002), is used to define the mesh of particles.
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Figure 3 : Load-displacement relation for (a) Case 1; (b) Case 2.
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Figure 4 : Collapse mechanism for (a) Case 1; (b) Case 2. Arrows indicate the applied loads’ location.
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Figure 5 : Discrete element mesh (a) previous and (b) after the particles’ expansion stage.

During the expansion stage the arch blocks are kept fixed. The introduction of an upper layer of
fixed blocks above the pavement level accelerates the rate of convergence of this stage, Fig. 5a.
After the expansion stage this layer is removed and the arch blocks set free, Fig. 5b. The fill
mesh contains 1984 particles. The knife load is applied by means of an additional block weigh-
ing 17.72 kN / m (147 kN) prevented from either rotate or move horizontally.

The adaptive global damping was used while the contact influence length was kept fixed. For a
point load value of 379.2 kN /m (3147 kN) the system was unable to converge (even with ei-
ther the local or the non-adaptive global damping schemes), showing an oscillating and non-
vanishing total out-of-balance force of 0.2—0.3 kN / m, which often occurs in the DEM when a
collapse state is approached. A further increment of 12.04 kN / m (100 kN) produced the imme-
diate collapse of the arch, corresponding to a collapse load of 391.2 kN / m (3247 kN), Fig. 8.
Once more the maximum compressive stress (3.01 MPa on the next to the last load step) is un-
der f,. Fig. 6 illustrates the collapse mechanism, revealing the prior rupture of the fill material
and the collapse of the arch for an almost direct application of the point load on the arch.

In Rouxinol et al. (2006) the fill was modelled with only 239 particles, producing a collapse
load of 2937.5 kN (353.9 kN / m), including the load carrying block weighting 37.5 kN. Thus,
the refinement of the mesh allowed for an evenly stress redistribution, avoiding some localised
phenomena responsible for interlocked particle clusters, both (i) between the arch’s extrados
and the particles and (ii) between the particles themselves. The lateral support conditions in the
previous model were introduced with an inclined abutment block. In the present model, a verti-
cal fixed block is used, but further away from the arch to avoid effects on the collapse mode.

3.5 Case 4 — Combined behaviour of arch plus brickwork spandrel wall

In this case the point load is applied to the combined system consisting of the arch and spandrel
wall. The 22x20x30 cm dimensions brickwork mesh considered in Rouxinol et al. (2006) is
now replaced by the coarser 22 x40x 60 cm. The knife load is applied on two bricks of the up-
per layer. Both the local and the adaptive global damping cases performed well, Fig. 8, giving a
collapse load of 433.73 kN / m (3600 kN). On the contrary, the non-adaptive damping case re-
quired an excessive number of iterations. The contact influence length was kept fixed. The
maximum compressive stress was bellow the admissible values for both the brickwork and
voussoirs (2.83 MPa on the next to the last load step). Fig. 7 illustrates the collapse mechanism.

An weighed average of the collapse load values for Cases 3 and 4 gives a rather rough esti-
mative of 3265 kN for the collapse load of the bridge (for a width of the fill section of 7.86 m
and of the walls of 0.44 m), corresponding to an error of +5% when compared to the value ob-
tained in situ. (Note that this totally omits some 3D features which might reduce the collapse
load as well as the favourable shell behaviour of the arch).
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Figure 6 : Case 3 for (a) F =800 kN ; (b) impending collapse; (c,d) effective collapse.

4 CONCLUSIONS

The example presented shows the potential of the mixed discrete element method (MDEM) to
become an useful and dependable tool for the determination of the collapse load of masonry
arch bridges. It can be concluded that the use of circular discrete elements (particles) to model
the fill material gives a failure load quite close to the obtained with the in situ test (which ap-
pears not to correspond to the effective collapse but instead to the formation of the collapse
mechanism). Case 1 with its lower value for the collapse load also confirms the relevance of in-
cluding the fill material in the DEM model. It would also be expected that Case 4, which is the
stiffest, would give the highest value for the collapse load. Finally, Case 2 is interesting from
the practical point of view because it provides a simple way to estimate the collapse load.

The comparison of the numerical damping schemes showed that, even though they force the
algorithm to converge to the same final state, the most efficient are the local or the adaptive
global. Finally, the comparison between fixed and non-fixed contact influence length produced
some differences at the stress field level but without consequences for the collapse state, includ-
ing the possibility of collapse by material crushing.
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Figure 8 : Load-displacement relations.
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