
 
 

1 INTRODUCTION 

The fundamental behaviour of tied-arches is based on the fact that a large compressive force is 
developed in the arch cross-section. Because of this, steel arches in particular can become 
highly sensitive to the out-of-plane buckling phenomenon. However, there is no clear and gen-
erally accepted calculation method to predict numerically this stability problem. On one hand, 
the buckling strength of a steel tied-arch bridge can be calculated by considering the non-linear 
elastic-plastic behaviour. As the imperfections of the arches highly influence the non-linear be-
haviour, these geometrical imperfections need to be known before starting this analysis. On the 
other hand, a linear calculation, resulting in an elastic buckling factor for the compression force, 
can be carried out. A multiplication factor for the occurring stresses can be found based on this 
calculation, using an adequate buckling curve, as mentioned for straight beams in ECCS-EG77-
2E (1978). In this case of proceeding by buckling curves, as well, the arch imperfections should 
be known beforehand. However, the imperfections in slender steel arch bridges are not related 
to those of a straight beam or column which makes it fundamentally impossible, or at least 
overly safe, to use the standard buckling curves, derived for straight beams.  

To improve the knowledge in this research field, several steel tied-arch bridges have been 
equipped with strain gauges, as shown by Van Bogaert and Outtier (2006), at various relevant 
cross-sections of the arch, spread out evenly along the total length of the arch. The size and 
shape of the out-of-plane geometrical imperfections were thus derived for these bridges using 
an analytical calculation method, described in Outtier et al (2006). 

In the linear elastic, as well as in the elastic-plastic calculation, the influence of these geomet-
rical out-of-plane imperfections on the lateral buckling behaviour are simulated, using a highly 
detailed finite element model. As the imperfections of arch bridges are smaller than can be ex-
pected for straight members, every detail of the bridge becomes important for determining the 
buckling load and may influence the results of the numerical simulations. Therefore, all details, 
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such as diaphragms, connection plates, orthotropic plated bridge deck, bearing systems and arch 
springs, are modelled in a very exact manner for the calculations which are the basis of this re-
search paper.  

Forthcoming of these calculations and of the quantification of the geometrical imperfections, 
the application of a similar finite element model allows for calculating the resistance to out-of-
plane buckling of steel arches. This calculation method constitutes the main contribution of this 
paper. 

2 DESCRIPTION OF THE FINITE ELEMENT MODEL 

A finite element model of the Albert Canal Bridge, which can be seen in Fig. 1, is used as the 
basis for the research on the resistance to out-of-plane buckling of arches. The Albert Canal 
Bridge was recently built in Belgium near the city of Antwerp, as part of the new high speed 
railway between Antwerp and Amsterdam. The bridge span equals 115 m, which is quite larger 
than the Albert Canal itself. However, this bridge span has been chosen in view of the further 
widening of the canal and the increasing of fluvial traffic on the canal toward the Port of Ant-
werp. The two arches of this steel tied-arch bridge are connected to the lower chord members by 
sixteen inclined hangers. The upper bracing is formed by three tubes of large diameters spread 
out along the length of the arch. The arch springs are tied by the lower chord, consisting of an 
orthotropic steel deck plate. The bridge is supported by neoprene bearing systems. 

 

 
Figure 1: The Albert Canal Bridge 

 
The finite element model, developed for this bridge can be seen in Fig. 2. To obtain a model 

that is as accurate as possible, special attention is given to all the details of the bridge, as is be-
ing described further, especially those which might introduce asymmetry into the model or 
might influence the buckling behaviour. Several possible out-of-plane imperfections are then 
superposed on the model of the bridge, to assess their influence on the buckling behaviour. 

 

 
Figure 2: Finite element model of the Albert Canal Bridge. 

2.1 The arches 
Both of the arches of the bridge are stiffened using diaphragms and longitudinal stiffeners, at 
the connection of the arch with the hangers and at the connection of the arch with the tubular 
wind bracings.  

The diaphragms at the connection with the hangers can be seen in Fig. 3 To allow for a better 
visibility of the diaphragms, one web plate has been removed from the model. In the lower 
flange plate of the arch, a longitudinal gap is designed, allowing the connection plate with the 
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hangers to enter the arch without connecting it to this flange of the arch, which would result in 
extreme local stresses. This connection plate also extends into the hangers, which have a rectan-
gular shape. This plate introduces the hanger forces into the arch. The connection between the 
arch and the connection plate is made by two diaphragms, which are welded to both ends of the 
connection plate, which ensures that the hanger forces are transmitted to the arch cross-section 
as evenly as possible. These diaphragms also increase the resistance of the arch cross-section to 
distortion. 

Other stiffened sections are found at the connection with the tubular wind bracings. The wind 
bracing tubes are connected to the arch sections, and on both ends of these bracings, diaphragms 
are installed inside of the arch, as can be seen in Fig. 4. Again, I this figure one web plate of the 
arch section, as well as the wind bracing itself are removed to deliver a better view on the dia-
phragms. These two diaphragms are connected to each other by two additional longitudinal 
stiffeners. 

 
Figure 3: Stiffening of the arch cross-section at the connection of the arch with the hangers. 

 

 
Figure 4: Stiffening of the arch at the connection of the wind bracings. 
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2.2 Orthotropic plated bridge deck 
Since the lower chord member of this steel tied-arch bridge consists of an orthotropic plated 
bridge deck, which has a very specific behaviour, the deck plate of the Albert Canal bridge is 
also modelled in detail, as can be seen in Fig 5. The longitudinal and transversal stiffness of the 
orthotropic plated deck are distribute the traffic loads forces to the arches by means of the hang-
ers. For further clarification of the illustration of the bridge deck in Fig. 5, the deck plate has 
been removed, displaying the trapezoidal stiffeners and the crossbeams. 

The lower chord of the arches consists of two longitudinal girders with an inverted T-cross 
section. These two girders are connected other by crossbeams. Furthermore, the deck plate is 
stiffened by 10 longitudinal closed section stiffeners. These stiffeners cross the crossbeams 
through special cut-outs in the webs, to avoid a very negative fatigue detail. 

At the arch springs, the arch compression forces are introduced in the deck plate. The thick-
ness of the bridge parts and especially the deck plate and crossbeam, is higher, the bridge deck 
being equipped with additional longitudinal and transversal stiffeners, as can be seen in Fig. 6.  
 

 
Figure 5: Cross section of the orthotropic plated bridge deck, showing the various stiffeners 

2.3 The bearing systems and the arch springs 
A first calculation run of the finite element model indicated that an important torsion effect ex-
ists near the arch springs, which fades out almost exponentially with increasing distance to the 
arch springs. This torsion effect is partly introduced by the neoprene bearings, which can be 
seen in Fig. 6. These bearings are not completely identical for the two arch springs, resulting in 
unsymmetrical end conditions. In addition, the neoprene bearing system, for which the move-
ment is restrained in the transverse direction of the bridge, can still move a few millimetres in 
that direction. The same applies to the longitudinally and the fully restrained .This small free-
dom of movement allows the small deformations of the ends of the bridge deck to be transmit-
ted to the arch springs, thus resulting in the torsion effect mentioned above. Obviously, a small 
portion of free displacements is indispensable to allow for the edge angular rotations, causing 
these small movements a various depth above the bearing centroid. 

The modelling of these neoprene bearing systems necessitates the use of approximately 2000 
volume elements of the Mindlin type. A series of specific flexible/flexible contact elements be-
tween the neoprene block with its steel interlayers and the fixing studs surrounding the neoprene 
block are used in the finite element model. For this application, a contact element has been cre-
ated, which results in a kinematic constraint which is activated as soon as contact occurs be-
tween the surfaces of the relevant volume elements, but remains inactive when this contact con-
dition does not appear. 
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Figure 6: Detail of the arch spring and the supporting neoprene bearings.  
 
Three types of calculations have been used for assessing the influence of restrained displace-

ments by the bearings. At a first stage the boundary conditions of the bridge were forced to steel 
plates rigidly connected to the main beam lower flanges. The boundary conditions result from 
the displacements allowed by the bearings, loaded by the reactions from the bridge, being con-
sidered separately. During a second stage, the aforementioned steel plates are replaced by the 
elaborate numerical model of neoprene bearings using volume elements of the bearings 

Finally a set of calculations assumes the neoprene bearings are being replaced by pot bear-
ings. Each pot bearing is installed at the same location as its neoprene equivalent, the top plate 
having identical dimensions as the neoprene bearings. 

2.4 Geometrical out-of-plane imperfections 
As mentioned before, the possible out-of-plane imperfections are superposed on the actual arch 
geometry. All of the enforced imperfections show a single wave sinus curve, with maximum 
amplitude of 115 mm. This amplitude equals 1/1000 fraction of the total the arch span, which is 
the value recommended by the buckling curves from European Convention for Constructional 
Steelwork (1977).  

The influence of the geometrical out-of-plane imperfections of both arches is also investi-
gated. These calculations are performed, once for the case of both arches having identical im-
perfections in the same direction and once with both arches having imperfections with identical 
amplitudes, but in opposite directions. 

2.5 Finite element model calculation strategy 
The finite element model of the bridge is then used during two completely different types of 
calculations. Firstly, a linear elastic calculation is carried out, the load acting on the bridge be-
ing increased linearly and the calculation being stopped, if the displacements of the bridge be-
come as large, any further increase would inevitably resulting in infinite increase of displace-
ments. This situation corresponds to the elastic arch buckling. This calculation starts while 
having only the dead load of the structure. In the following time steps, the live load consisting 
of sixteen heavy lorries is placed on the bridge deck and is being increased stepwise. Starting 
from time step 2, the weight of these 16 lorries is increased linearly until the end of the calcula-
tion is reached by divergence of the finite element calculation criterion.  

A subsequent calculation is of the elastic-plastic type. The calculation strategy is similar to 
the former one, using this time plastic material behaviour law for the steel parts of the structure. 
The definition of this material law complies to Eurocode guidelines for the finite element mod-
elling of plastic materials.  
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These two types of calculations are then repeated for each type of bearing system and for all 
of the combinations of geometrical out-of-plane imperfections superposed on the arch geome-
try, according to the previous paragraph. 

In order to calculate the buckling curves of the arches, supported by the three different types 
of bearing systems, as well as for all other calculations reported in this paper, this type of elas-
tic-plastic analysis is preferred to more classical linear stability calculations for finite element 
software. The method allows for better distinguishing the increase of the lateral displacements 
with each increment of the vertical load on the bridge deck before reaching the bifurcation 
point. In contrast to linear stability analysis, material non linear analysis returns the exact value 
of the failure load of the construction. The difference in behaviour between an arch supported 
by neoprene bearings and by pot bearings thus becomes very clear. A second advantage of the 
procedure is that not all loads must be increased during the analysis, the dead load being held at 
constant value during the calculation process and the live load being stepwise increased. This 
incremental loading corresponds to actual buckling behaviour, rather than the application of in-
creasing of the total load. 

3 USE OF BUCKLING CURVES FOR ELASTIC-PLASTIC CONDITION 

Eurocode, EN 1993-1-1(2005) or the ECCS-curves do not give a specific buckling curve for 
arches. Since the arch section of the Albert Canal Bridge is a rectangular welded box, buckling 
curve b should be used for the design of this arch bridge, although this buckling curve was de-
veloped for the design of straight beams and columns.  

For each type of bearing system, as well as for each type of enforced imperfection, the criti-
cal elastic normal force and the critical plastic normal force in the arch cross-section were de-
termined using the finite element model described above. The appropriate dimensionless slen-
derness was calculated using the critical elastic normal force, Ncr, as can be seen in Eq. (1). 
Herein A is the area of the cross-section of the arch and fy the yield strength. 

cr

y

N
fA ⋅

=λ  (1) 

The critical plastic normal force, Nu, could then be used to calculate the buckling factor: 

fyA
Nu

u
⋅

=ν  (2) 

4 CALCULATION RESULTS, RELATIVE TO THE BUCKLING CURVES 
4.1 Geometrical imperfections 
The results of the finite element calculations, for the model with several types of imperfections 
are shown in Fig. 7. For each calculation, the post processing and subsequent calculation of the 
normal forces is always performed for the same arch, called “Arch I”, the opposite arch logi-
cally being called “Arch II”.  

All of the calculation results are located well above buckling curve b, which according to EN 
1993-1-1 has to be used for the design of this arch bridge. It can thus be stated, that calculation 
of arch stability based on the assumption that buckling curve b for linear elements is valid for 
arched elements, is conservative. In fact the buckling load will be much higher, closer to the 
value obtained from buckling curve a0. Since no specific buckling curves for arches exist at this 
present, this situation cannot be avoided. 

Both of the following figures also plot the limit value, as well as the most relevant buckling 
curves of the Eurocode, EN 1993-1-1 (2005) , to allow for comparison.  
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Figure 7: Influence of the geometrical out-of-plane imperfections on the buckling behaviour, relative to 

the buckling curves. 
 
All of the calculation results are divided into two groups of points in Fig. 7. Group I corre-

sponds to perfect arch behaviour of “Arch I”, or to the “Arch I” condition with half sine wave 
imperfections having 115 mm amplitude. This amplitude is directed towards the second arch of 
the bridge. Group II, in Fig 7 displays all calculation results for “Arch I” having half sine wave 
imperfections of -115 m amplitude, which is directed away form the opposite arch. The excep-
tion to this rule are the data points, for which both of the arches have imperfections in opposite 
directions, or in other words, when both arches bend towards each other or away from each 
other. In the condition of “Arch I” showing a negative imperfection, e.g. directed away form 
“Arch II” and at the same time “Arch II” showing an imperfection directed towards “Arch I”, 
the calculation result is located in group I, and not in group II. In general, it can be concluded 
that the imperfections of the arch, the buckling behaviour of which is being studied, are deter-
mining the buckling load. 

4.2 Influence of the bearing systems 
For each type of bridge bearing system discussed above, the values of the buckling factor and of 
the slenderness are plotted in the diagram of the buckling curves, as defined in the Eurocode, as 
displayed in Fig. 8. 

The results for each type of bridge bearing are all located well above buckling curve b. This 
abundantly demonstrates that should arch bridges be designed by using buckling curve b for lin-
ear elements the result will be too conservative, the real condition being closer to the result from 
buckling curve a0.  

This calculation draws attention to the importance of the type of bearings supporting steel 
tied-arch bridges. Pot bearings render improved buckling loads and stability behaviour com-
pared to neoprene bearings, as can be clearly seen on Fig. 8. 
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Figure 8: Influence of the type of bearing on the buckling behaviour of an arch. 

5 CONCLUSION 

An elaborately detailed finite element model of a steel tied-arch bridge is used to assess the in-
fluence of bearing systems on the buckling behaviour of the arch, including out-of-plane geo-
metrical imperfections. 

A perfect steel tied-arch bridge, supported by pot or neoprene bearings has higher buckling 
resistance than a straight beam, having identical cross-section characteristics. 

Regardless of the influence of the bearing systems, it has been implied that the shape and the 
direction of the geometrical out-of-plane imperfections are determining the buckling behaviour 
of the arch.  

Finally, apart from geometrical imperfections, the bearing systems have an important part in 
the buckling behaviour of arches. A steel tied-arch bridge supported by pot bearings shows 
higher buckling resistance than in case of having a neoprene bearing system. 
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