
 
 
 
 

1 INTRODUCTION 

The most recent large masonry bridges were built in the 1920’s. For forty years, only modest 
attention was paid to masonry bridges. Studies appeared again in the late 1960’s (Heymann, 
1966). In France, the collapse of a bridge in 1978 (Wilson bridge at Tours) raised awareness of 
the need to develop an efficient calculation tool for these old bridges. Michotey and Delbecq 
developed a program named VOUTE, based on limit analysis theory, which was able to 
determine a coefficient of safety from collapse, and marketed it from 1982 to 1996 (Delbecq, 
1982). Similar programs were developed at the same time in the United Kingdom (Hughes, 
1997). Today, several specific software packages co-exist (Proske and Gelder, 2009). One of the 
most famous is RING, which analyses the collapse state only. But, despite the efforts of the UIC 
(Orban, 2005), no method of calculation is completely satisfactory. The research on modelling 
the mechanical behaviour of masonry bridges therefore continues.  

In the University of Toulouse, we are developing a new calculation tool for masonry arches 
in order to estimate their serviceability. Our aim is not only to determine vault collapse and a 
safety coefficient but also to describe the mechanical response of the arches under service loads 
as accurately as possible in 3D. The methodology we are developing has to become a tool 
applicable to the largest possible number of arches with various boundary conditions (blocked 
or sliding support), and in three dimensions, in order to be able to take account of transversal 
damage mechanisms not considered in the earlier model..  

We have chosen to describe the mechanical behaviour of the constitutive masonries using a 
damage model. This model presents the following advantages: 

Firstly, the location of cracks is not a hypothesis as in joint element or discrete element 
calculations since the cracks and damage zones are the natural consequences of the localization 
process induced by the softening phase of the behaviour law. 

Secondly, the damage model considers unilateral aspects of the behaviour law; in masonry 
they are due to the possibility of crack reclosing and the crushing of the material in 
compression.  
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The portability of the model is not a problem since a damage model can be implemented in 
any finite element code. 

Lastly, the damage model allows the fracture energy to be managed not only in tension but 
also in compression. 

In the first section below, we describe the damage model developed in Toulouse and its 
application to masonry material. Then, a case study of a French bridge and its results are 
presented. 

DAMAGE MODEL 

The damage model used here is an orthotropic based one. It is a variant of the initial model 
described in detail by Sellier and Bary. The following presentation adopts the six-dimensional 
vectorial representation of the classical 3 * 3 symmetric tensors. An effective stress σ

ρ~  is 
computed according to the elastic strain eε

ρ , using the sound material stiffness matrix 0C: 
eεσ

ρρ
.~ 0C=                                                            (1) 

The effective stresses are divided into tension, t~σ
ρ

, and compression, c~σ
ρ

, parts according to 
the sign of the main stresses. The positive part is used in a Rankine Criterion (Maximal Tensile 
Stress criterion, also called MTS by Erdogan and Sih, (1963). This criterion is used to assess the 
tensile damage tensor tD which affects the positive effective stresses. The negative part of the 
effective stresses is used to assess a Drucker Pragger equivalent stress defined by: 
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With J2d the second invariant of the deviator of c~σ
ρ

, I1 the trace of c~σ
ρ

and δ the Drucker 
Pragger constant, which depends on the internal friction angle ϕ as follows in Eq.3. 
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The Drucker Pragger equivalent stress is used to assess a compressive damage tensor. In Eq 4, 
both the tensile and compressive damage affects the effective stresses orthotropically to give the 
stress to be used at integration points of the finite element code. The internal variables that 
characterize the damage state are noted Dt in the tensile domain and Dc in compressive domain. 

)~~).).((( cttc σσσ
ρρρ
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with Ithe identity tensor. 
The evolution laws used to link the criteria and the damage lead to a softening phase of the 

behaviour laws as illustrated in Fig.1. To avoid a dependence of the finite element solution on 
the mesh size (due to the localization induced by softening), the damage also depends on the 
finite element size. The model also allows a variable to be plotted that is interesting for 
practitioners: the Crack Mouth Opening Displacement (CMOD). It can be plotted directly at the 
Gauss point during the finite element solving procedure or post-treated at the end of the whole 
calculation for each substep. This CMOD depends not only on the damage state but also on the 
strain state. In the present modelling, it corresponds to the averaged crack opening displacement 
computed assuming a single localised crack in the element. It is approached in the main 
direction of the Rankine effective stress by the following expression: 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
= t

peak

t
peak

t
mt

peak
R
mt

peak

t
peak

t
m

m
e

mm D
DD

HEH
D

DD
elCMOD

11
. εσε ρρ                  (5) 

With :  
ml : finite element length in the direction meρ ; 

meρ : vectorial representation of the elementary matrix obtained by the tensorial product of 
the unitary vector in the main direction ‘m’; 
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t
mD : tensile damage value in the corresponding main direction ‘m’; 
t
peakD  : damage value at the peak of the behaviour law in tension (point 1 in Fig.1); 
R
mσ  : current value of the Rankine criterion in the direction ‘m’; 

t
peakEε : the equivalent stress reached in direct tension for the point 1 in Fig.1; 

otherwiseXforXH 0,01)( >= : Heaviside function. 
 
An illustration of the benefit of using this variable instead of the classic damage variable is 

given at the end of this paper. The advantage is that, even if much limited cracking occurs in a 
massive structure, only the main cracks will stay open until failure occurs, and all the other 
surrounding ones will be reclosed. CMOD is then able to capture this main crack among the 
multiple damaged elements. 
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Figure 1 : damage model, behaviour under cyclic axial load (cycle order numbered 1 to 4). 

CASE STUDY 

The masonry arch presented here has already been studied with an elasto-plastic finite element 
model for compressive behaviour coupled with joint elements to describe tensile cracking 
(Domède, 2006). Our aim is now to build a comparative study and identify the advantages and 
disadvantages of the damage model. 

The bridge is a circular, single span built in 1870, with length L=14.37m, radius R = 10.75m, 
width = 4.80 m and keystone 79 cm thick (see Fig.2 and Fig.3). It is composed of four different 
masonries. The vault is in brick, the lateral strings and springing in cut stone, the spandrel walls 
in stone arranged in opus incertum, and the fill in rubble. The mortar is a hydraulic lime mortar 
without cement. Fig.2 shows the different parts of the bridge with the mesh used for the finite 
element analysis. Fig.3 gives some photos of details taken in the field. 
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Figure 2 : geometry of the arch bridge studied.  
 

View without the front spandrel wall and the fill (left), location of the 4 masonries (right). 
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Figure 3 : images of the bridges. 

Modelling of materials  
To determine the homogenized model of each of the 4 different masonries, we applied a 
numerical method validated by an experimental approach on brick masonry. The steps were the 
following:  

(1) Experimental individual characterization of the mortar and of the bricks (compressive 
tests), 

(2) Fitting of the mortar and the brick individual behaviour laws with a damage model,  
(3) Tests of multilayer brick – mortar samples in order to determine the confinement effect on 

the mortar, and the cracking scheme (Fig.4), 
(4) Modelling of the multilayer sample and parametric study, 
(5) Fitting of a single damage parameter set on last results for the homogenised masonry 

behaviour law. 
The mechanical characteristics in compression, the compressive strength fc, the strain at peak 

εc,peak, the fracture energy in compression Gc, the Young modulus E and the Poisson coefficient 
ν, chosen for the 4 masonries of the bridge studied are given in Tab. 1. The shear angle ϕ equals 
20° (δ= 0.45). The stress-strain curves are given in Fig.5. 

In tension, the same damage law, corresponding to the approximated weakest zone, i.e. the 
brick mortar interfaces, is adopted for all the masonries, with the following characteristics:  
tensile strength ft = 0.1MPa, strain at peak εt,peak = ft / E, fracture energy in tension Gt = 
0.002N/mm. 

 
Table 1 : mechanical characteristics of blocks and masonries in compression 

  fc εc,peak Gc E ν 
  N/mm2 mm/m N/mm N/mm2  
Brick masonry Vault  11.9 3.5 50. 6800 0.15 
Natural stone Stone string 49.5 3.5 100. 28100 0.25 
masonries Spandrel wall 42.5 3.5 200. 21700 0.2 
 Fill  42.5 3.5 200. 21700 0.2 

 

          
   

Figure 4 : images of multilayer and wall samples after tests. 
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Figure 5 : homogeneous damage model of the 4 masonries. 

Bridge modelling 
The mesh of the bridge (Fig.2) has been automated but requires a few parameters to be given by 
the user (position of the centre of the circle describing the intrados, its radius and its open angle, 
level of the abutments, highest level of the spandrel walls, thickness at crown, dimensions of the 
abutments, thickness of the spandrel walls). Each of the 4 different masonries is described by a 
damage model presented above. The mesh of the masonry is made with 3D massive cubic finite 
elements without any element interfaces. In this study, the bridge cannot slip on the ground, but 
this boundary condition could be easily modified.  

The bridge is straight and has axial symmetry. In order to decrease the calculation time, only 
half of the bridge is modelled (half the width).  

Loading of the bridge 
The bridge is first loaded by its own weight (10 MN) and next by an off-centre vehicle weight 
located at a third of the span (arrows in Fig.6). The vehicle is represented by two axles, with 
geometry in conformity with type TS of Eurocode 1. The two corresponding localized loads are 
applied to intermediate elastic solid (in red on Fig.6) added to diffuse localized load effects and 
limit punching in the fill. The transverse positioning of this tandem is central (half of the axles 
are positioned on half of the bridge). The load is increased until the bridge collapses. 
 

 
 

Figure 6 : location of the loads. View of half of the bridge mesh from outside 

RESULTS 

The results are commented in terms of displacements, limit load, damage variables and location 
of opened cracks. They are compared with the results obtained 3 years ago using the plastic 
model associated with joint elements (Domede, 2006). To facilitate comparison, the essential 
results of the first calculation are briefly recalled. 
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Reminder of main results obtained with the previous models 
Masonry behaviour in compression was modelled with plastic Von Mises materials in massive 
finite elements. The cracking was possible through joint elements with a Coulomb model. They 
were positioned a priori only transversally (see Fig.7). In a first calculation, the abutments were 
able to slide on the ground because of the positioning of the joint elements. The collapse load 
was then around 7MN. 

If the abutments were blocked on the ground, the bridge bearing capacity increased until the 
compression strength of one of the masonry elements was reached. But it was also noticed that 
the compressive stress gradient between the stone string and the brick vault created shear 
stresses in the interface between these two zones, concomitant with transverse tensile stresses. 
The risk of localized longitudinal failure was clear from 4MN but, without longitudinal joint 
elements in the model, it was not possible to demonstrate this phenomenon. 
 

 
 

Figure 7 : model with joint elements used three years ago 

Results obtained with the proposed damage model 
With the proposed damage model, the maximum load reached was 4.3MN. Beyond this 
threshold, the deformation of the bridge was uncontrolled (Fig.8). 
 

 
 
Figure 8 : view of the deflected bridge and load – displacement curve.Comparison between plastic model 
with joint elements and damage model. 
 
Even though the failure load has the same order of magnitude as in the previous model (with 
joint and without damage), the failure mode forks at this value and becomes very different 
beyond the corresponding displacement, as explained in the following paragraph. 

Damage and Crack opening 
An idealized view of the cracking pattern obtained with the damage model is shown in fig. 10. It 
corresponds to the last step described in Fig. 11. The two first cracks are transverse but, finally, 
the most widely opened cracks are longitudinal. They are located along the cut stone lateral 
string. This failure mechanism could not be captured by the previous joint element model 
because of the impossibility crossing the elements. 
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Figure 10 : Cracking state with order of appearance of cracks (left), load – crack opening curve (right) 
 
Fig.11 gives the increase of tensile damage (Dt) and crack opening displacement (CMOD), step 
by step. Dc is not shown because no element was damaged in compression. Comparing CMOD 
and Dt in Fig.11 shows that, although the damage seems to be relatively generalised at the end 
of the calculation, only a few elements present a significant CMOD. This means that most of the 
cracking initiated does not propagate, because of the localisation phenomena controlled by the 
softening part of the damage model. 
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Figure 11 : Increase of CMOD and Dt with the axle loads. View of half the bridge. 

CONCLUSION AND PROSPECTS 

In this paper, the calculation of a masonry arch bridge under loads with a damage model in 3D 
has been presented. Unlike the joint element model, it allows automatic determination of the 
crack locations, whatever the underlying mechanical phenomenon (tension, compression or 
shear). The width of the cracks is calculated step by step, which allows a serviceability limit 
state to be chosen in terms of crack opening limit. By studying the load – deflection curves, it is 
possible to define an ultimate limit state.  
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This model is currently being improved in association with the SNCF, the French railway 
corporation, in order to create a finite element toolbox usable by practitioners in charge of the 
maintenance and restoration of the masonry bridges. 
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